These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38250511)

  • 1. Adaptive Surgical Robotic Training Using Real-Time Stylistic Behavior Feedback Through Haptic Cues.
    Ershad M; Rege R; Majewicz Fey A
    IEEE Trans Med Robot Bionics; 2021 Nov; 3(4):959-969. PubMed ID: 38250511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Correcting Anxious Movements Using Haptic Cues on the Da Vinci Surgical Robot.
    Zheng Y; Ershad M; Fey AM
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2022 Aug; 2022():. PubMed ID: 37408769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic and near real-time stylistic behavior assessment in robotic surgery.
    Ershad M; Rege R; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):635-643. PubMed ID: 30779023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Soft Robotic Wearable Wrist Device for Kinesthetic Haptic Feedback.
    Skorina EH; Luo M; Onal CD
    Front Robot AI; 2018; 5():83. PubMed ID: 33500962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective surgical performance evaluation based on haptic feedback.
    Moody L; Baber C; Arvanitis TN
    Stud Health Technol Inform; 2002; 85():304-10. PubMed ID: 15458106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing User Performance by Adaptively Changing Haptic Feedback Cues in a Fitts's Law Task.
    Rowland D; Davis B; Higgins T; Fey AM
    IEEE Trans Haptics; 2024; 17(1):92-99. PubMed ID: 38271167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.
    Pinzon D; Byrns S; Zheng B
    Surg Innov; 2016 Aug; 23(4):415-21. PubMed ID: 26839212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.
    Prasad MS; Manivannan M; Manoharan G; Chandramohan SM
    J Surg Educ; 2016; 73(5):858-69. PubMed ID: 27267563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a master-slave 3D printed robotic surgical finger with haptic feedback.
    Hamdi JT; Munshi S; Azam S; Omer A
    J Robot Surg; 2024 Jan; 18(1):43. PubMed ID: 38236452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Let the force guide you: a performance-based adaptive algorithm for postural training using haptic feedback.
    Agarwal R; Hussain A; Skm V; Campolo D
    Front Hum Neurosci; 2022; 16():968669. PubMed ID: 36504631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing skill learning with dual-user haptic feedback: insights from a task-specific approach.
    Zhang Y; Wang O; Wang Y; Tavakoli M; Zheng B
    Front Robot AI; 2023; 10():1286282. PubMed ID: 38077453
    [No Abstract]   [Full Text] [Related]  

  • 20. Shaping Human Movement via Bimanually-Dependent Haptic Force Feedback.
    Boehm JR; Fey NP; Majewicz Fey A
    World Haptics Conf; 2023 Jul; 2023():266-272. PubMed ID: 38222039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.