These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38250567)

  • 1. Towards quantifying atmospheric dispersion of pesticide spray drift in Yuma County Arizona.
    Yuan S; Arellano AF; Knickrehm L; Chang HI; Castro CL; Furlong M
    Atmos Environ (1994); 2024 Feb; 319():. PubMed ID: 38250567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Determinants of Near-Road Ambient Air Quality for an Urban Intersection and a Freeway Site.
    Frey HC; Grieshop AP; Khlystov A; Bang JJ; Rouphail N; Guinness J; Rodriguez D; Fuentes M; Saha P; Brantley H; Snyder M; Tanvir S; Ko K; Noussi T; Delavarrafiee M; Singh S
    Res Rep Health Eff Inst; 2022 Sep; 2022(207):1-73. PubMed ID: 36314577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015.
    Kasner EJ; Prado JB; Yost MG; Fenske RA
    Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study.
    Perkins DB; Abi-Akar F; Goodwin G; Brain RA
    Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data.
    Allwine KJ; Thistle HW; Teske ME; Anhold J
    Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications.
    Desmarteau DA; Ritter AM; Hendley P; Guevara MW
    Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study.
    Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB
    Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona.
    Sugeng AJ; Beamer PI; Lutz EA; Rosales CB
    Sci Total Environ; 2013 Oct; 463-464():35-41. PubMed ID: 23783270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine.
    Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D
    Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the meteorology and PM
    Hyde P; Mahalov A; Li J
    J Air Waste Manag Assoc; 2018 Mar; 68(3):177-195. PubMed ID: 28738173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Models and Measurements of Traffic-Related Air Pollutants for Health Studies Using Dispersion Modeling and Bayesian Data Fusion.
    Batterman S; Berrocal VJ; Milando C; Gilani O; Arunachalam S; Zhang KM
    Res Rep Health Eff Inst; 2020 Mar; 2020(202):1-63. PubMed ID: 32239871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying pesticide emissions for drift deposition in comparative risk and impact assessment.
    Zhang Y; Li Z; Reichenberger S; Gentil-Sergent C; Fantke P
    Environ Pollut; 2024 Feb; 342():123135. PubMed ID: 38092339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of the climate change effects on pesticide vapor drift from ground-based pesticide applications to cotton.
    Kannan N
    Sci Rep; 2023 Jun; 13(1):9740. PubMed ID: 37328554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling spray drift and runoff-related inputs of pesticides to receiving water.
    Zhang X; Luo Y; Goh KS
    Environ Pollut; 2018 Mar; 234():48-58. PubMed ID: 29156441
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.