These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 38251120)

  • 1. Computational Nanotoxicology Models for Environmental Risk Assessment of Engineered Nanomaterials.
    Tang W; Zhang X; Hong H; Chen J; Zhao Q; Wu F
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
    Oksel C; Ma CY; Liu JJ; Wilkins T; Wang XZ
    Adv Exp Med Biol; 2017; 947():103-142. PubMed ID: 28168667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.
    Chen G; Vijver MG; Xiao Y; Peijnenburg WJGM
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental risk assessment of engineered nano-SiO
    Wang Y; Nowack B
    Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. International landscape of limits and recommendations for occupational exposure to engineered nanomaterials.
    Rodríguez-Ibarra C; Déciga-Alcaraz A; Ispanixtlahuatl-Meráz O; Medina-Reyes EI; Delgado-Buenrostro NL; Chirino YI
    Toxicol Lett; 2020 Apr; 322():111-119. PubMed ID: 31981686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study.
    Baalousha M; Yang Y; Vance ME; Colman BP; McNeal S; Xu J; Blaszczak J; Steele M; Bernhardt E; Hochella MF
    Sci Total Environ; 2016 Jul; 557-558():740-53. PubMed ID: 27046139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing risk assessments for the development of occupational exposure limits for engineered nanomaterials.
    Schulte PA; Kuempel ED; Drew NM
    Regul Toxicol Pharmacol; 2018 Jun; 95():207-219. PubMed ID: 29574195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology.
    Oberdörster G
    J Intern Med; 2010 Jan; 267(1):89-105. PubMed ID: 20059646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs).
    Romero-Franco M; Godwin HA; Bilal M; Cohen Y
    Beilstein J Nanotechnol; 2017; 8():989-1014. PubMed ID: 28546894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials.
    Tolaymat T; El Badawy A; Sequeira R; Genaidy A
    J Hazard Mater; 2015 Nov; 298():270-81. PubMed ID: 26079368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants.
    Liu Y; Nie Y; Wang J; Wang J; Wang X; Chen S; Zhao G; Wu L; Xu A
    Ecotoxicol Environ Saf; 2018 Oct; 162():92-102. PubMed ID: 29990744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment.
    Kansara K; Bolan S; Radhakrishnan D; Palanisami T; Al-Muhtaseb AH; Bolan N; Vinu A; Kumar A; Karakoti A
    Environ Pollut; 2022 Mar; 296():118726. PubMed ID: 34953948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein corona on nanomaterials by machine learning using novel descriptors.
    Duan Y; Coreas R; Liu Y; Bitounis D; Zhang Z; Parviz D; Strano M; Demokritou P; Zhong W
    NanoImpact; 2020 Jan; 17():. PubMed ID: 32104746
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Yu H; Luo D; Dai L; Cheng F
    Nanoscale; 2021 May; 13(19):8722-8739. PubMed ID: 33960351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.