These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38251170)

  • 1. Circumventing the Uncertainties of the Liquid Phase in the Compositional Control of VLS III-V Ternary Nanowires Based on Group V Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of Vapor-Liquid-Solid III-V Ternary Nanowires Based on Group-III Intermix.
    Dubrovskii VG
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Consistent Model for the Compositional Profiles in Vapor-Liquid-Solid III-V Nanowire Heterostructures Based on Group V Interchange.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires.
    Leshchenko ED; Dubrovskii VG
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the Vapor-Liquid-Solid Growth of Ternary III-V Nanowires in the Presence of Silicon.
    Hijazi H; Zeghouane M; Dubrovskii VG
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires.
    MÃ¥rtensson EK; Johansson J; Dick KA
    ACS Nanosci Au; 2022 Jun; 2(3):239-249. PubMed ID: 37101824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling of interfacial abruptness in axial nanowire heterostructures.
    Leshchenko ED; Dubrovskii VG
    Nanotechnology; 2022 Nov; 34(6):. PubMed ID: 36356307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the Length and Radius of Catalyst-Free III-V Nanowires Grown by Selective Area Epitaxy.
    Dubrovskii VG
    ACS Omega; 2019 May; 4(5):8400-8405. PubMed ID: 31459928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires.
    Klamchuen A; Suzuki M; Nagashima K; Yoshida H; Kanai M; Zhuge F; He Y; Meng G; Kai S; Takeda S; Kawai T; Yanagida T
    Nano Lett; 2015 Oct; 15(10):6406-12. PubMed ID: 26372675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying.
    Perea DE; Li N; Dickerson RM; Misra A; Picraux ST
    Nano Lett; 2011 Aug; 11(8):3117-22. PubMed ID: 21696182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vapor-solid-solid growth dynamics in GaAs nanowires.
    Maliakkal CB; Tornberg M; Jacobsson D; Lehmann S; Dick KA
    Nanoscale Adv; 2021 Oct; 3(20):5928-5940. PubMed ID: 36132677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition.
    Lim SK; Tambe MJ; Brewster MM; Gradecak S
    Nano Lett; 2008 May; 8(5):1386-92. PubMed ID: 18386937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures.
    Lee JS; Brittman S; Yu D; Park H
    J Am Chem Soc; 2008 May; 130(19):6252-8. PubMed ID: 18402451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires.
    Meng G; Yanagida T; Nagashima K; Yoshida H; Kanai M; Klamchuen A; Zhuge F; He Y; Rahong S; Fang X; Takeda S; Kawai T
    J Am Chem Soc; 2013 May; 135(18):7033-8. PubMed ID: 23581597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the growth kinetics of vapor-liquid-solid propagated Ge nanowires.
    Biswas S; O'Regan C; Petkov N; Morris MA; Holmes JD
    Nano Lett; 2013 Sep; 13(9):4044-52. PubMed ID: 23919662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.
    Mohammad SN
    Nano Lett; 2008 May; 8(5):1532-8. PubMed ID: 18380484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A flux induced crystal phase transition in the vapor-liquid-solid growth of indium-tin oxide nanowires.
    Meng G; Yanagida T; Yoshida H; Nagashima K; Kanai M; Zhuge F; He Y; Klamchuen A; Rahong S; Fang X; Takeda S; Kawai T
    Nanoscale; 2014 Jun; 6(12):7033-8. PubMed ID: 24842296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.