These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 38251376)
41. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Porcheron G; Dozois CM Vet Microbiol; 2015 Aug; 179(1-2):2-14. PubMed ID: 25888312 [TBL] [Abstract][Full Text] [Related]
42. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. Hamilton S; Bongaerts RJ; Mulholland F; Cochrane B; Porter J; Lucchini S; Lappin-Scott HM; Hinton JC BMC Genomics; 2009 Dec; 10():599. PubMed ID: 20003355 [TBL] [Abstract][Full Text] [Related]
43. Biofilm and Pathogenesis-Related Proteins in the Foodborne Quintieri L; Fanelli F; Zühlke D; Caputo L; Logrieco AF; Albrecht D; Riedel K Front Microbiol; 2020; 11():991. PubMed ID: 32670211 [TBL] [Abstract][Full Text] [Related]
44. Stress adaptation in foodborne pathogens. Begley M; Hill C Annu Rev Food Sci Technol; 2015; 6():191-210. PubMed ID: 25665171 [TBL] [Abstract][Full Text] [Related]
45. Role of ClpX and ClpP in Streptococcus suis serotype 2 stress tolerance and virulence. Roy S; Zhu Y; Ma J; Roy AC; Zhang Y; Zhong X; Pan Z; Yao H Microbiol Res; 2019; 223-225():99-109. PubMed ID: 31178057 [TBL] [Abstract][Full Text] [Related]
46. Alternative Sigma Factor RpoX Is a Part of the RpoE Regulon and Plays Distinct Roles in Stress Responses, Motility, Biofilm Formation, and Hemolytic Activities in the Marine Pathogen Vibrio alginolyticus. Gu D; Zhang J; Hao Y; Xu R; Zhang Y; Ma Y; Wang Q Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31053580 [No Abstract] [Full Text] [Related]
47. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Khan F; Jeong GJ; Tabassum N; Mishra A; Kim YM Appl Microbiol Biotechnol; 2022 Sep; 106(18):5835-5862. PubMed ID: 35989330 [TBL] [Abstract][Full Text] [Related]
48. Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. Sasaki K; Kim MH; Imai R New Phytol; 2013 Apr; 198(1):95-102. PubMed ID: 23323758 [TBL] [Abstract][Full Text] [Related]
49. Characterization of Two Dinoflagellate Cold Shock Domain Proteins. Beauchemin M; Roy S; Pelletier S; Averback A; Lanthier F; Morse D mSphere; 2016; 1(1):. PubMed ID: 27303711 [TBL] [Abstract][Full Text] [Related]
50. An intrinsically disordered domain in Polaribacter irgensii KOPRI 22228 CspB confers extraordinary freeze-tolerance. Jung YH; Uh JH; Lee K; Im H Biochem Biophys Res Commun; 2018 Feb; 496(2):374-380. PubMed ID: 29330047 [TBL] [Abstract][Full Text] [Related]
51. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. Kennedy NM; Mukherjee N; Banerjee P J Food Prot; 2016 Jul; 79(7):1259-65. PubMed ID: 27357048 [TBL] [Abstract][Full Text] [Related]
52. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity. Zhang B; Yue L; Zhou L; Qi L; Li J; Dong X Front Microbiol; 2017; 8():1597. PubMed ID: 28878753 [TBL] [Abstract][Full Text] [Related]
53. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus. Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U FEBS J; 2007 Mar; 274(5):1265-79. PubMed ID: 17266726 [TBL] [Abstract][Full Text] [Related]
54. Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions. Franco Meléndez K; Crenshaw K; Barrila J; Yang J; Gangaraju S; Davis RR; Forsyth RJ; Ott CM; Kader R; Curtiss R; Roland K; Nickerson CA mSphere; 2022 Aug; 7(4):e0021022. PubMed ID: 35913142 [TBL] [Abstract][Full Text] [Related]
55. Involvement of CspC in response to diverse environmental stressors in Escherichia coli. Cardoza E; Singh H J Appl Microbiol; 2022 Feb; 132(2):785-801. PubMed ID: 34260797 [TBL] [Abstract][Full Text] [Related]
56. Chestnut Shell Polyphenols Inhibit the Growth of Three Food-Spoilage Bacteria by Regulating Key Enzymes of Metabolism. Wang X; Li Y; Liu S; Wang H; Chang X; Zhang J Foods; 2023 Sep; 12(17):. PubMed ID: 37685244 [TBL] [Abstract][Full Text] [Related]
57. Regulatory principles governing Salmonella and Yersinia virulence. Erhardt M; Dersch P Front Microbiol; 2015; 6():949. PubMed ID: 26441883 [TBL] [Abstract][Full Text] [Related]
58. Ethanol adaptation in foodborne bacterial pathogens. He S; Fong K; Wang S; Shi X Crit Rev Food Sci Nutr; 2021; 61(5):777-787. PubMed ID: 32274932 [TBL] [Abstract][Full Text] [Related]
59. A Hypothetical Protein of Alteromonas macleodii AltDE1 (amad1_06475) Predicted to be a Cold-Shock Protein with RNA Chaperone Activity. Oany AR; Ahmad SA; Kibria KK; Hossain MU; Jyoti TP Gene Regul Syst Bio; 2014; 8():141-7. PubMed ID: 25574135 [TBL] [Abstract][Full Text] [Related]
60. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Sasaki K; Kim MH; Imai R Biochem Biophys Res Commun; 2007 Dec; 364(3):633-8. PubMed ID: 17963727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]