BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38251667)

  • 1. CRISPR/Cas9-Based Disease Modeling and Functional Correction of Interleukin 7 Receptor Alpha Severe Combined Immunodeficiency in T-Lymphocytes and Hematopoietic Stem Cells.
    Rai R; Steinberg Z; Romito M; Zinghirino F; Hu YT; White N; Naseem A; Thrasher AJ; Turchiano G; Cavazza A
    Hum Gene Ther; 2024 Apr; 35(7-8):269-283. PubMed ID: 38251667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs.
    Iancu O; Allen D; Knop O; Zehavi Y; Breier D; Arbiv A; Lev A; Lee YN; Beider K; Nagler A; Somech R; Hendel A
    Mol Ther Nucleic Acids; 2023 Mar; 31():105-121. PubMed ID: 36618262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells.
    Brault J; Liu T; Liu S; Lawson A; Choi U; Kozhushko N; Bzhilyanskaya V; Pavel-Dinu M; Meis RJ; Eckhaus MA; Burkett SS; Bosticardo M; Kleinstiver BP; Notarangelo LD; Lazzarotto CR; Tsai SQ; Wu X; Dahl GA; Porteus MH; Malech HL; De Ravin SS
    Front Immunol; 2022; 13():1067417. PubMed ID: 36685559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1.
    Schiroli G; Ferrari S; Conway A; Jacob A; Capo V; Albano L; Plati T; Castiello MC; Sanvito F; Gennery AR; Bovolenta C; Palchaudhuri R; Scadden DT; Holmes MC; Villa A; Sitia G; Lombardo A; Genovese P; Naldini L
    Sci Transl Med; 2017 Oct; 9(411):. PubMed ID: 29021165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-viral
    Byambaa S; Uosaki H; Ohmori T; Hara H; Endo H; Nureki O; Hanazono Y
    Mol Ther Methods Clin Dev; 2021 Mar; 20():451-462. PubMed ID: 33614821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells.
    Pavani G; Fabiano A; Laurent M; Amor F; Cantelli E; Chalumeau A; Maule G; Tachtsidi A; Concordet JP; Cereseto A; Mavilio F; Ferrari G; Miccio A; Amendola M
    Blood Adv; 2021 Mar; 5(5):1137-1153. PubMed ID: 33635334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing.
    Hou Y; Ureña-Bailén G; Mohammadian Gol T; Gratz PG; Gratz HP; Roig-Merino A; Antony JS; Lamsfus-Calle A; Daniel-Moreno A; Handgretinger R; Mezger M
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes.
    Brault J; Liu T; Bello E; Liu S; Sweeney CL; Meis RJ; Koontz S; Corsino C; Choi U; Vayssiere G; Bosticardo M; Dowdell K; Lazzarotto CR; Clark AB; Notarangelo LD; Ravell JC; Lenardo MJ; Kleinstiver BP; Tsai SQ; Wu X; Dahl GA; Malech HL; De Ravin SS
    Blood; 2021 Dec; 138(26):2768-2780. PubMed ID: 34086870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of checkpoints in human T-cell development using severe combined immunodeficiency stem cells.
    Wiekmeijer AS; Pike-Overzet K; IJspeert H; Brugman MH; Wolvers-Tettero IL; Lankester AC; Bredius RG; van Dongen JJ; Fibbe WE; Langerak AW; van der Burg M; Staal FJ
    J Allergy Clin Immunol; 2016 Feb; 137(2):517-526.e3. PubMed ID: 26441229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel 268 kb deletion combined with a splicing variant in IL7R causes of severe combined immunodeficiency in a Chinese family: a case report.
    Yan L; He Y; Zhang Y; Liu Y; Xu L; Han C; Zhao Y; Li H
    BMC Med Genomics; 2023 Dec; 16(1):323. PubMed ID: 38082310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency.
    Tuckett AZ; Thornton RH; O'Reilly RJ; van den Brink MRM; Zakrzewski JL
    J Hematol Oncol; 2017 May; 10(1):109. PubMed ID: 28511686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease.
    De Ravin SS; Li L; Wu X; Choi U; Allen C; Koontz S; Lee J; Theobald-Whiting N; Chu J; Garofalo M; Sweeney C; Kardava L; Moir S; Viley A; Natarajan P; Su L; Kuhns D; Zarember KA; Peshwa MV; Malech HL
    Sci Transl Med; 2017 Jan; 9(372):. PubMed ID: 28077679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient CRISPR/Cas9-Mediated Gene Knockin in Mouse Hematopoietic Stem and Progenitor Cells.
    Tran NT; Sommermann T; Graf R; Trombke J; Pempe J; Petsch K; Kühn R; Rajewsky K; Chu VT
    Cell Rep; 2019 Sep; 28(13):3510-3522.e5. PubMed ID: 31553918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing.
    McAuley GE; Yiu G; Chang PC; Newby GA; Campo-Fernandez B; Fitz-Gibbon ST; Wu X; Kang SL; Garibay A; Butler J; Christian V; Wong RL; Everette KA; Azzun A; Gelfer H; Seet CS; Narendran A; Murguia-Favela L; Romero Z; Wright N; Liu DR; Crooks GM; Kohn DB
    Cell; 2023 Mar; 186(7):1398-1416.e23. PubMed ID: 36944331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Genome-Editing Tools to Model and Correct Primary Immunodeficiencies.
    Ott de Bruin LM; Volpi S; Musunuru K
    Front Immunol; 2015; 6():250. PubMed ID: 26052330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted genome editing restores T cell differentiation in a humanized X-SCID pluripotent stem cell disease model.
    Alzubi J; Pallant C; Mussolino C; Howe SJ; Thrasher AJ; Cathomen T
    Sci Rep; 2017 Sep; 7(1):12475. PubMed ID: 28963568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-Mediated ELANE Mutation Correction in Hematopoietic Stem and Progenitor Cells to Treat Severe Congenital Neutropenia.
    Tran NT; Graf R; Wulf-Goldenberg A; Stecklum M; Strauß G; Kühn R; Kocks C; Rajewsky K; Chu VT
    Mol Ther; 2020 Dec; 28(12):2621-2634. PubMed ID: 32822592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Editing With TALEN, CRISPR-Cas9 and CRISPR-Cas12a in Combination With AAV6 Homology Donor Restores T Cell Function for XLP.
    Houghton BC; Panchal N; Haas SA; Chmielewski KO; Hildenbeutel M; Whittaker T; Mussolino C; Cathomen T; Thrasher AJ; Booth C
    Front Genome Ed; 2022; 4():828489. PubMed ID: 35677600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.