BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38251670)

  • 21. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation.
    Song MK; Lee JH; Ryoo IG; Lee SH; Ku SK; Kwak MK
    Free Radic Biol Med; 2019 Jul; 138():33-42. PubMed ID: 31059771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of KEAP1-targeting PROTAC and its antioxidant properties: In vitro and in vivo.
    Park SY; Gurung R; Hwang JH; Kang JH; Jung HJ; Zeb A; Hwang JI; Park SJ; Maeng HJ; Shin D; Oh SH
    Redox Biol; 2023 Aug; 64():102783. PubMed ID: 37348157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).
    Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC
    Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp.
    Hori R; Yamaguchi K; Sato H; Watanabe M; Tsutsumi K; Iwamoto S; Abe M; Onodera H; Nakamura S; Nakai R
    Cancer Med; 2019 Mar; 8(3):1157-1168. PubMed ID: 30735010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polygonum cuspidatum extract attenuates fructose-induced liver lipid accumulation through inhibiting Keap1 and activating Nrf2 antioxidant pathway.
    Zhao XJ; Chen L; Zhao Y; Pan Y; Yang YZ; Sun Y; Jiao RQ; Kong LD
    Phytomedicine; 2019 Oct; 63():152986. PubMed ID: 31310912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hepatoprotective Effect of Polysaccharides Isolated from
    Lin G; Luo D; Liu J; Wu X; Chen J; Huang Q; Su L; Zeng L; Wang H; Su Z
    Oxid Med Cell Longev; 2018; 2018():6962439. PubMed ID: 30116489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer.
    Telkoparan-Akillilar P; Panieri E; Cevik D; Suzen S; Saso L
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33808001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A double-edged sword: The Kelch-like ECH-associated protein 1-nuclear factor erythroid-derived 2-related factor 2-antioxidant response element pathway targeted pharmacological modulation in nonalcoholic fatty liver disease.
    Wang YL; Wu J; Li RX; Sun YT; Ma YJ; Zhao CY; Zou J; Zhang YY; Sun XD
    Curr Opin Pharmacol; 2021 Oct; 60():281-290. PubMed ID: 34500407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review.
    Qin JJ; Cheng XD; Zhang J; Zhang WD
    Cell Commun Signal; 2019 Sep; 17(1):121. PubMed ID: 31511020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upregulation of microRNA-125b-5p alleviates acute liver failure by regulating the Keap1/Nrf2/HO-1 pathway.
    Tao YC; Wang YH; Wang ML; Jiang W; Wu DB; Chen EQ; Tang H
    Front Immunol; 2022; 13():988668. PubMed ID: 36268033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The involvement of NRF2 in lung cancer.
    Bauer AK; Hill T; Alexander CM
    Oxid Med Cell Longev; 2013; 2013():746432. PubMed ID: 23577226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing.
    Rabbani PS; Zhou A; Borab ZM; Frezzo JA; Srivastava N; More HT; Rifkin WJ; David JA; Berens SJ; Chen R; Hameedi S; Junejo MH; Kim C; Sartor RA; Liu CF; Saadeh PB; Montclare JK; Ceradini DJ
    Biomaterials; 2017 Jul; 132():1-15. PubMed ID: 28391065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide- induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response.
    Feng RB; Wang Y; He C; Yang Y; Wan JB
    Food Chem Toxicol; 2018 Sep; 119():479-488. PubMed ID: 29066411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual roles of ULK1 (unc-51 like autophagy activating kinase 1) in cytoprotection against lipotoxicity.
    Park JS; Lee DH; Lee YS; Oh E; Bae KH; Oh KJ; Kim H; Bae SH
    Autophagy; 2020 Jan; 16(1):86-105. PubMed ID: 30907226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells.
    Yang L; Zahid M; Liao Y; Rogan EG; Cavalieri EL; Davidson NE; Yager JD; Visvanathan K; Groopman JD; Kensler TW
    Carcinogenesis; 2013 Nov; 34(11):2587-92. PubMed ID: 23843041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upregulation of nuclear factor (erythroid-derived 2)-like 2 protein level in the human colorectal adenocarcinoma cell line DLD-1 by a heterocyclic organobismuth(III) compound: Effect of organobismuth(III) compound on NRF2 signaling.
    Iuchi K; Tasaki Y; Shirai S; Hisatomi H
    Biomed Pharmacother; 2020 May; 125():109928. PubMed ID: 32004978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting autophagy to modulate hepatic ischemia/reperfusion injury: A comparative study between octreotide and melatonin as autophagy modulators through AMPK/PI3K/AKT/mTOR/ULK1 and Keap1/Nrf2 signaling pathways in rats.
    Mohamed DZ; El-Sisi AEE; Sokar SS; Shebl AM; Abu-Risha SE
    Eur J Pharmacol; 2021 Apr; 897():173920. PubMed ID: 33571535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Keap1-Nrf2 signaling activation by Bardoxolone-methyl ameliorates high glucose-induced oxidative injury in human umbilical vein endothelial cells.
    Yang JL; Sun MY; Yuan Q; Tang S; Dong MJ; Zhang RD; Liu YY; Mao L
    Aging (Albany NY); 2020 Jun; 12(11):10370-10380. PubMed ID: 32484788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative subcellular localization of NRF2 and KEAP1 during the hepatocellular carcinoma development in vivo.
    Guerrero-Escalera D; Alarcón-Sánchez BR; Arellanes-Robledo J; Cruz-Rangel A; Del Pozo-Yauner L; Chagoya de Sánchez V; Resendis-Antonio O; Villa-Treviño S; Torres-Mena JE; Pérez-Carreón JI
    Biochim Biophys Acta Mol Cell Res; 2022 May; 1869(5):119222. PubMed ID: 35093454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice.
    Rush BM; Bondi CD; Stocker SD; Barry KM; Small SA; Ong J; Jobbagy S; Stolz DB; Bastacky SI; Chartoumpekis DV; Kensler TW; Tan RJ
    Kidney Int; 2021 Jan; 99(1):102-116. PubMed ID: 32818518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.