BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 3825175)

  • 21. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin.
    Ueda O; Sugihara K; Ohta S; Kitamura S
    Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state.
    Barber MJ; Siegel LM
    Biochemistry; 1983 Feb; 22(3):618-24. PubMed ID: 6301524
    [No Abstract]   [Full Text] [Related]  

  • 23. Potent inhibition of human liver aldehyde oxidase by raloxifene.
    Obach RS
    Drug Metab Dispos; 2004 Jan; 32(1):89-97. PubMed ID: 14709625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals.
    Ketchum PA; Cambier HY; Frazier WA; Madansky CH; Nason A
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):1016-23. PubMed ID: 4393266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromate reduction by rabbit liver aldehyde oxidase.
    Banks RB; Cooke RT
    Biochem Biophys Res Commun; 1986 May; 137(1):8-14. PubMed ID: 2941018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molybdenum hydroxylases: biological distribution and substrate-inhibitor specificity.
    Beedham C
    Prog Med Chem; 1987; 24():85-127. PubMed ID: 3332920
    [No Abstract]   [Full Text] [Related]  

  • 27. Mechanisms of inactivation of molybdoenzymes by cyanide.
    Coughlan MP; Johnson JL; Rajagopalan KV
    J Biol Chem; 1980 Apr; 255(7):2694-9. PubMed ID: 6244290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 29. Digestion and absorption of bovine milk xanthine oxidase and its role as an aldehyde oxidase.
    Ho CY; Clifford AJ
    J Nutr; 1976 Nov; 106(11):1600-9. PubMed ID: 10360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The molybdoenzymes xanthine oxidase and aldehyde oxidase contain fast- and slow-DTNB reacting sulphydryl groups.
    Cabré F; Cascante M; Canela EI
    J Protein Chem; 1992 Oct; 11(5):547-51. PubMed ID: 1449601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An extremely potent anilinoacridine inhibitor of aldehyde oxidase.
    Gormley PE; Rossitch E; D'Anna ME; Cysyk R
    Biochem Biophys Res Commun; 1983 Oct; 116(2):759-64. PubMed ID: 6689124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Species variation in hepatic aldehyde oxidase activity.
    Beedham C; Bruce SE; Critchley DJ; al-Tayib Y; Rance DJ
    Eur J Drug Metab Pharmacokinet; 1987; 12(4):307-10. PubMed ID: 3130251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remarkable positional (regio)specificity of xanthine oxidase and some dehydrogenases in the reactions with substituted benzaldehydes.
    Pelsy G; Klibanov AM
    Biochim Biophys Acta; 1983 Jan; 742(2):352-7. PubMed ID: 6337634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen.
    Xia M; Dempski R; Hille R
    J Biol Chem; 1999 Feb; 274(6):3323-30. PubMed ID: 9920873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies by electron-paramagnetic-resonance spectroscopy of the molybdenum centre of aldehyde oxidase.
    Bray RC; George GN; Gutteridge S; Norlander L; Stell JG; Stubley C
    Biochem J; 1982 Apr; 203(1):263-7. PubMed ID: 6285895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the specificity toward aldehyde substrates and steady-state kinetics of xanthine oxidase.
    Morpeth FF
    Biochim Biophys Acta; 1983 May; 744(3):328-34. PubMed ID: 6687810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitory effects of flavonoids on molybdenum hydroxylases activity.
    Rashidi MR; Nazemiyeh H
    Expert Opin Drug Metab Toxicol; 2010 Feb; 6(2):133-52. PubMed ID: 20095789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification of rat liver xanthine oxidase and xanthine dehydrogenase by affinity chromatography on benzamidine-sepharose.
    McManaman JL; Shellman V; Wright RM; Repine JE
    Arch Biochem Biophys; 1996 Aug; 332(1):135-41. PubMed ID: 8806718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials.
    Beedham C; al-Tayib Y; Smith JA
    Drug Metab Dispos; 1992; 20(6):889-95. PubMed ID: 1362942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic comparison of reduction and intramolecular electron transfer in milk xanthine oxidase and chicken liver xanthine dehydrogenase by laser flash photolysis.
    Walker MC; Hazzard JT; Tollin G; Edmondson DE
    Biochemistry; 1991 Jun; 30(24):5912-7. PubMed ID: 2043632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.