These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 38251793)
1. Cysteine thiol sulfinic acid in plant stress signaling. Huang J; De Veirman L; Van Breusegem F Plant Cell Environ; 2024 Aug; 47(8):2766-2779. PubMed ID: 38251793 [TBL] [Abstract][Full Text] [Related]
2. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Shi Y; Carroll KS Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209 [TBL] [Abstract][Full Text] [Related]
3. The redox biochemistry of protein sulfenylation and sulfinylation. Lo Conte M; Carroll KS J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405 [TBL] [Abstract][Full Text] [Related]
4. Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress. Li X; Day NJ; Feng S; Gaffrey MJ; Lin TD; Paurus VL; Monroe ME; Moore RJ; Yang B; Xian M; Qian WJ Redox Biol; 2021 Oct; 46():102111. PubMed ID: 34425387 [TBL] [Abstract][Full Text] [Related]
5. A Chemical Approach for the Detection of Protein Sulfinylation. Lo Conte M; Lin J; Wilson MA; Carroll KS ACS Chem Biol; 2015 Aug; 10(8):1825-30. PubMed ID: 26039147 [TBL] [Abstract][Full Text] [Related]
6. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. Woo HA; Jeong W; Chang TS; Park KJ; Park SJ; Yang JS; Rhee SG J Biol Chem; 2005 Feb; 280(5):3125-8. PubMed ID: 15590625 [TBL] [Abstract][Full Text] [Related]
8. A direct way of redox sensing. Benoit R; Auer M RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941 [TBL] [Abstract][Full Text] [Related]
9. The sulfinic acid switch in proteins. Jacob C; Holme AL; Fry FH Org Biomol Chem; 2004 Jul; 2(14):1953-6. PubMed ID: 15254616 [TBL] [Abstract][Full Text] [Related]
10. The Expanding Landscape of the Thiol Redox Proteome. Yang J; Carroll KS; Liebler DC Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762 [TBL] [Abstract][Full Text] [Related]
11. iCysMod: an integrative database for protein cysteine modifications in eukaryotes. Wang P; Zhang Q; Li S; Cheng B; Xue H; Wei Z; Shao T; Liu ZX; Cheng H; Wang Z Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33406221 [TBL] [Abstract][Full Text] [Related]
12. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications. Paulech J; Liddy KA; Engholm-Keller K; White MY; Cordwell SJ Mol Cell Proteomics; 2015 Mar; 14(3):609-20. PubMed ID: 25561502 [TBL] [Abstract][Full Text] [Related]
13. Thiol-based posttranslational modifications in parasites. Jortzik E; Wang L; Becker K Antioxid Redox Signal; 2012 Aug; 17(4):657-73. PubMed ID: 22085115 [TBL] [Abstract][Full Text] [Related]
14. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Yu J; Li Y; Qin Z; Guo S; Li Y; Miao Y; Song C; Chen S; Dai S Antioxid Redox Signal; 2020 Jul; 33(1):35-57. PubMed ID: 31989831 [No Abstract] [Full Text] [Related]
15. Cysteine-based redox regulation and signaling in plants. Couturier J; Chibani K; Jacquot JP; Rouhier N Front Plant Sci; 2013; 4():105. PubMed ID: 23641245 [TBL] [Abstract][Full Text] [Related]
16. Protein Thiol Redox Signaling in Monocytes and Macrophages. Short JD; Downs K; Tavakoli S; Asmis R Antioxid Redox Signal; 2016 Nov; 25(15):816-835. PubMed ID: 27288099 [TBL] [Abstract][Full Text] [Related]
17. The emerging roles of protein glutathionylation in chloroplasts. Zaffagnini M; Bedhomme M; Lemaire SD; Trost P Plant Sci; 2012 Apr; 185-186():86-96. PubMed ID: 22325869 [TBL] [Abstract][Full Text] [Related]
18. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids. Ishida YI; Aki M; Fujiwara S; Nagahama M; Ogasawara Y Hum Cell; 2017 Oct; 30(4):279-289. PubMed ID: 28434171 [TBL] [Abstract][Full Text] [Related]
19. Cysteine thiol-based post-translational modification: What do we know about transcription factors? Zhou H; Huang J; Willems P; Van Breusegem F; Xie Y Trends Plant Sci; 2023 Apr; 28(4):415-428. PubMed ID: 36494303 [TBL] [Abstract][Full Text] [Related]
20. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Woo HA; Chae HZ; Hwang SC; Yang KS; Kang SW; Kim K; Rhee SG Science; 2003 Apr; 300(5619):653-6. PubMed ID: 12714748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]