These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38251978)

  • 1. In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption.
    Pavan G; Singh S
    J Acoust Soc Am; 2024 Jan; 155(1):496-510. PubMed ID: 38251978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the strong absorption band by impedance matched mosquito-coil-like acoustic metamaterials.
    Hou M; Wu J; Yang S; Wu JH; Ma F
    Rev Sci Instrum; 2020 Feb; 91(2):025102. PubMed ID: 32113386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.
    Ward GP; Lovelock RK; Murray AR; Hibbins AP; Sambles JR; Smith JD
    Phys Rev Lett; 2015 Jul; 115(4):044302. PubMed ID: 26252688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid fractal acoustic metamaterials for low-frequency sound absorber based on cross mixed micro-perforated panel mounted over the fractals structure cavity.
    Singh SK; Prakash O; Bhattacharya S
    Sci Rep; 2022 Nov; 12(1):20444. PubMed ID: 36443324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering three-dimensional labyrinthine fractal acoustic metamaterials with low-frequency multi-band sound suppression.
    Man X; Xia B; Luo Z; Liu J; Li K; Nie Y
    J Acoust Soc Am; 2021 Jan; 149(1):308. PubMed ID: 33514175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoviscous-acoustic metamaterials to damp acoustic modes in complex shape geometries at low frequencies.
    Kone TC; Lopez M; Ghinet S; Dupont T; Panneton R
    J Acoust Soc Am; 2021 Sep; 150(3):2272. PubMed ID: 34598627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound.
    Tang Y; Ren S; Meng H; Xin F; Huang L; Chen T; Zhang C; Lu TJ
    Sci Rep; 2017 Feb; 7():43340. PubMed ID: 28240239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband low frequency sound absorption using a monostable acoustic metamaterial.
    Li X; Xing T; Zhao J; Gai X
    J Acoust Soc Am; 2020 Feb; 147(2):EL113. PubMed ID: 32113307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound propagation in and low frequency noise absorption by helium-filled porous material.
    Choy YS; Huang L; Wang C
    J Acoust Soc Am; 2009 Dec; 126(6):3008-19. PubMed ID: 20000914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation of Modular Composable Acoustic Metamaterials with Multiple Nonunique Chambers.
    Yang X; Shen X; Hu D; Wang X; Song H; Zhao R; Zhang C; Shen C; Yang M
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acoustic performances of a subwavelength hierarchical honeycomb structure: Analytical, numerical, and experimental investigations.
    Chen W; Lu C; Wang X; Liu S
    J Acoust Soc Am; 2023 Mar; 153(3):1754. PubMed ID: 37002108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.
    Zhang Y; Chan YJ; Huang L
    J Acoust Soc Am; 2014 May; 135(5):2738-45. PubMed ID: 24815257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark acoustic metamaterials as super absorbers for low-frequency sound.
    Mei J; Ma G; Yang M; Yang Z; Wen W; Sheng P
    Nat Commun; 2012 Mar; 3():756. PubMed ID: 22453829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-sparse metamaterials absorber for broadband low-frequency sound with free ventilation.
    Shao C; Xiong W; Long H; Tao J; Cheng Y; Liu X
    J Acoust Soc Am; 2021 Aug; 150(2):1044. PubMed ID: 34470305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Aperture Shape on Absorption Property of Acoustic Metamaterial of Parallel-Connection Helmholtz Resonator.
    Bi S; Yang F; Tang S; Shen X; Zhang X; Zhu J; Yang X; Peng W; Yuan F
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Influencing Factors for Stackable and Expandable Acoustic Metamaterial with Multiple Tortuous Channels.
    Bi S; Yang F; Shen X; Zhang J; Yang X; Zhang H; Peng W
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band.
    Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.