These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38251978)

  • 21. Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz Resonators.
    Hedayati R; Lakshmanan S
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bilayer ventilated labyrinthine metasurfaces with high sound absorption and tunable bandwidth.
    Du J; Luo Y; Zhao X; Sun X; Song Y; Hu X
    Sci Rep; 2021 Mar; 11(1):5829. PubMed ID: 33712683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphite-oxide hybrid multi-degree of freedom resonator metamaterial for broadband sound absorption.
    Bucciarelli F; Malfense Fierro GP; Rapisarda M; Meo M
    Sci Rep; 2022 Aug; 12(1):14611. PubMed ID: 36028529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane-type smart metamaterials for multi-modal sound insulation.
    Zhang X; Chen F; Chen Z; Wang G
    J Acoust Soc Am; 2018 Dec; 144(6):3514. PubMed ID: 30599690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Underwater metamaterial absorber with impedance-matched composite.
    Qu S; Gao N; Tinel A; Morvan B; Romero-García V; Groby JP; Sheng P
    Sci Adv; 2022 May; 8(20):eabm4206. PubMed ID: 35584217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sound absorption by acoustic microlattice with optimized pore configuration.
    Cai X; Yang J; Hu G; Lu T
    J Acoust Soc Am; 2018 Aug; 144(2):EL138. PubMed ID: 30180656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metadiffusers: Deep-subwavelength sound diffusers.
    Jiménez N; Cox TJ; Romero-García V; Groby JP
    Sci Rep; 2017 Jul; 7(1):5389. PubMed ID: 28710374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of geometry on acoustic end-corrections of slits in microslit absorbers.
    Aulitto A; Hirschberg A; Lopez Arteaga I
    J Acoust Soc Am; 2021 May; 149(5):3073. PubMed ID: 34241127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-frequency perfect sound absorption achieved by a modulus-near-zero metamaterial.
    Shao C; Long H; Cheng Y; Liu X
    Sci Rep; 2019 Sep; 9(1):13482. PubMed ID: 31530878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity.
    Wang C; Cheng L; Pan J; Yu G
    J Acoust Soc Am; 2010 Jan; 127(1):238-46. PubMed ID: 20058969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Less Is More: Hollow-Truss Microlattice Metamaterials with Dual Sound Dissipation Mechanisms and Enhanced Broadband Sound Absorption.
    Li X; Yu X; Zhai W
    Small; 2022 Nov; 18(44):e2204145. PubMed ID: 36135783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorption and scattering by perforated facings with periodic narrow slits.
    Brunskog J; Glebe D; Garza-Agudelo D; Nilsson E
    J Acoust Soc Am; 2022 Mar; 151(3):1847. PubMed ID: 35364920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on Sound-Insulation Performance of an Acoustic Metamaterial of Air-Permeable Multiple-Parallel-Connection Folding Chambers by Acoustic Finite Element Simulation.
    Peng W; Bi S; Shen X; Yang X; Yang F; Wang E
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials.
    Chang L; Jiang A; Rao M; Ma F; Huang H; Zhu Z; Zhang Y; Wu Y; Li B; Hu Y
    RSC Adv; 2021 Nov; 11(60):37784-37800. PubMed ID: 35498066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of slow sound to design perfect and broadband passive sound absorbing materials.
    Groby JP; Pommier R; Aurégan Y
    J Acoust Soc Am; 2016 Apr; 139(4):1660. PubMed ID: 27106313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing, constructing and testing of a new generation of sound barriers.
    Negahdari H; Javadpour S; Moattar F
    J Environ Health Sci Eng; 2019 Dec; 17(2):507-527. PubMed ID: 32030130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emission enhancement of sound emitters using an acoustic metamaterial cavity.
    Song K; Lee SH; Kim K; Hur S; Kim J
    Sci Rep; 2014 Mar; 4():4165. PubMed ID: 24584552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Low-Frequency Sound Absorption of a Porous Layer Mosaicked with Perforated Resonator.
    Li X; Liu B; Wu Q
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A lightweight metastructure for simultaneous low-frequency broadband sound absorption and vibration isolation.
    Gu T; Wen Z; He L; Yu M; Li Y; Li Y; Jin Y
    J Acoust Soc Am; 2023 Jan; 153(1):96. PubMed ID: 36732276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband sound absorption based on impedance decoupling and modulation mechanisms.
    Mei Z; Li X; Lyu Y; Sang J; Cheng X; Yang J
    J Acoust Soc Am; 2023 Nov; 154(5):3479-3486. PubMed ID: 38019095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.