These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38252040)

  • 61. Matching within a hybrid RCT/RWD: framework on associated causal estimands.
    Lin J; Yu G; Gamalo M
    J Biopharm Stat; 2023 Jul; 33(4):439-451. PubMed ID: 35929973
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimal planning of phase II/III programs for clinical trials with multiple endpoints.
    Kieser M; Kirchner M; Dölger E; Götte H
    Pharm Stat; 2018 Sep; 17(5):437-457. PubMed ID: 29700949
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Borrowing information across subgroups in phase II trials: is it useful?
    Freidlin B; Korn EL
    Clin Cancer Res; 2013 Mar; 19(6):1326-34. PubMed ID: 23303215
    [TBL] [Abstract][Full Text] [Related]  

  • 64. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.
    Zhou H; Lee JJ; Yuan Y
    Stat Med; 2017 Sep; 36(21):3302-3314. PubMed ID: 28589563
    [TBL] [Abstract][Full Text] [Related]  

  • 65. TOP: Time-to-Event Bayesian Optimal Phase II Trial Design for Cancer Immunotherapy.
    Lin R; Coleman RL; Yuan Y
    J Natl Cancer Inst; 2020 Jan; 112(1):38-45. PubMed ID: 30924863
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Robust statistical inference for matched win statistics.
    Matsouaka RA
    Stat Methods Med Res; 2022 Aug; 31(8):1423-1438. PubMed ID: 35578578
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Predictive probability of success using surrogate endpoints.
    Saint-Hilary G; Barboux V; Pannaux M; Gasparini M; Robert V; Mastrantonio G
    Stat Med; 2019 May; 38(10):1753-1774. PubMed ID: 30548627
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An optimal Bayesian predictive probability design for phase II clinical trials with simple and complicated endpoints.
    Guo B; Liu S
    Biom J; 2020 Mar; 62(2):339-349. PubMed ID: 31402481
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Applying the win ratio method in clinical trials of orphan drugs: an analysis of data from the COMET trial of avalglucosidase alfa in patients with late-onset Pompe disease.
    Boentert M; Berger KI; Díaz-Manera J; Dimachkie MM; Hamed A; Riou França L; Thibault N; Shukla P; Ishak J; Caro JJ
    Orphanet J Rare Dis; 2024 Jan; 19(1):14. PubMed ID: 38216959
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bayesian sample-size determination methods considering both worthwhileness and unpromisingness for exploratory two-arm randomized clinical trials with binary endpoints.
    Kakizume T; Zhang F; Kawasaki Y; Daimon T
    Pharm Stat; 2020 Jan; 19(1):71-83. PubMed ID: 31496045
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Bayesian meta-analytic approach for safety signal detection in randomized clinical trials.
    Odani M; Fukimbara S; Sato T
    Clin Trials; 2017 Apr; 14(2):192-200. PubMed ID: 28059578
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The use of phase 2 interim analysis to expedite drug development decisions.
    Huang J; Das A; Burger HU; Zhong W; Zhang W; Lieberman G
    Contemp Clin Trials; 2014 Jul; 38(2):235-44. PubMed ID: 24854415
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Generalized triple outcome decision-making in basket trials.
    Zang M; Liu R
    J Biopharm Stat; 2024 Jan; ():1-17. PubMed ID: 38166528
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conditional borrowing external data to establish a hybrid control arm in randomized clinical trials.
    Li H; Tiwari R; Li QH
    J Biopharm Stat; 2022 Nov; 32(6):954-968. PubMed ID: 35067183
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simulation optimization for Bayesian multi-arm multi-stage clinical trial with binary endpoints.
    Yu Z; Ramakrishnan V; Meinzer C
    J Biopharm Stat; 2019; 29(2):306-317. PubMed ID: 30763151
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A comparison of Bayesian information borrowing methods in basket trials and a novel proposal of modified exchangeability-nonexchangeability method.
    Daniells L; Mozgunov P; Bedding A; Jaki T
    Stat Med; 2023 Oct; 42(24):4392-4417. PubMed ID: 37614070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Bayesian dose-finding trial with adaptive dose expansion to flexibly assess efficacy and safety of an investigational drug.
    Berry SM; Spinelli W; Littman GS; Liang JZ; Fardipour P; Berry DA; Lewis RJ; Krams M
    Clin Trials; 2010 Apr; 7(2):121-35. PubMed ID: 20338905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Bayesian basket design for genomic variant-driven phase II trials.
    Simon R; Geyer S; Subramanian J; Roychowdhury S
    Semin Oncol; 2016 Feb; 43(1):13-18. PubMed ID: 26970120
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Utility of Bayesian Single-Arm Design in New Drug Application for Rare Cancers in Japan: A Case Study of Phase 2 Trial for Sarcoma.
    Hirakawa A; Nishikawa T; Yonemori K; Shibata T; Nakamura K; Ando M; Ueda T; Ozaki T; Tamura K; Kawai A; Fujiwara Y
    Ther Innov Regul Sci; 2018 May; 52(3):334-338. PubMed ID: 29714533
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new basket trial design based on clustering of homogeneous subpopulations.
    Krajewska M; Rauch G
    J Biopharm Stat; 2021 Jul; 31(4):425-447. PubMed ID: 34236938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.