BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38252574)

  • 1. An Upper Limb Exoskeleton Motion Generation Algorithm Based on Separating Shoulder and Arm Motion.
    Wang J; Pei S; Guo J; Dong A; Liu B; Yao Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1142-1153. PubMed ID: 38252574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference path generation for upper-arm exoskeletons considering scapulohumeral rhythms.
    Soltani-Zarrin R; Zeiaee A; Langari R; Robson N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():753-758. PubMed ID: 28813910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of an underactuated arm exoskeleton on wrist and elbow kinematics during Prioritized Activities of daily living.
    Casanova-Batlle E; de Zee M; Thøgersen M; Tillier Y; Andreasen Struijk LNS
    J Biomech; 2022 Jun; 139():111137. PubMed ID: 35594818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Upper-Extremity Joint Angles Using Harmony Exoskeleton.
    De Oliveira AC; Sulzer JS; Deshpande AD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():916-925. PubMed ID: 33872155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping ADL Motion Capture Data to BLUE SABINO Exoskeleton Kinematics and Dynamics.
    Bitikofer CK; Wolbrecht ET; Perry JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4914-4919. PubMed ID: 30441445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach.
    Gupta S; Agrawal A; Singla E
    Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation exoskeleton.
    Li G; Fang Q; Xu T; Zhao J; Cai H; Zhu Y
    Technol Health Care; 2019; 27(S1):123-132. PubMed ID: 31045532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton.
    Grimm F; Kraugmann J; Naros G; Gharabaghi A
    J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Inverse Kinematics of a Redundant 4R Exoskeleton Shoulder Joint.
    Keemink AQL; van Oort G; Wessels M; Stienen AHA
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):817-829. PubMed ID: 29641386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm.
    Głowiński S; Błażejewski A
    Acta Bioeng Biomech; 2019; 21(1):45-53. PubMed ID: 31197289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant.
    Iranzo S; Piedrabuena A; Iordanov D; Martinez-Iranzo U; Belda-Lois JM
    Appl Ergon; 2020 Sep; 87():103120. PubMed ID: 32310110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.