These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38252577)

  • 41. Comparison of Wide-Band Vibrotactile and Friction Modulation Surface Gratings.
    Grigorii RV; Li Y; Peshkin MA; Colgate JE
    IEEE Trans Haptics; 2021; 14(4):792-803. PubMed ID: 33905334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
    Kim Y; Harders M; Gassert R
    IEEE Trans Haptics; 2015; 8(3):298-305. PubMed ID: 25807569
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reciprocal Interactions Between Audition and Touch in Flutter Frequency Perception.
    Convento S; Wegner-Clemens KA; Yau JM
    Multisens Res; 2019 Jan; 32(1):67-85. PubMed ID: 31059492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Impact of Simultaneously Applying Normal Stress and Vibrotactile Stimulation for Feedback of Exteroceptive Information.
    Reza Motamedi M; Otis M; Duchaine V
    J Biomech Eng; 2017 Jun; 139(6):. PubMed ID: 28395001
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task.
    Arabzadeh E; Clifford CW; Harris JA; Mahns DA; Macefield VG; Birznieks I
    J Neurophysiol; 2014 Nov; 112(10):2382-7. PubMed ID: 25143540
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tactile communication systems optimizing the display of information.
    Jones LA
    Prog Brain Res; 2011; 192():113-28. PubMed ID: 21763522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Focused Vibrotactile Stimuli From a Wearable Sparse Array of Actuators.
    de Vlam V; Wiertlewski M; Vardar Y
    IEEE Trans Haptics; 2023; 16(4):511-517. PubMed ID: 37097798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees.
    Guemann M; Bouvier S; Halgand C; Paclet F; Borrini L; Ricard D; Lapeyre E; Cattaert D; Rugy A
    J Neuroeng Rehabil; 2019 Nov; 16(1):138. PubMed ID: 31722740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Haptic Enchanters: Attachable and Detachable Vibrotactile Modules and Their Advantages.
    Park G; Cha H; Choi S
    IEEE Trans Haptics; 2019; 12(1):43-55. PubMed ID: 30047899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conveying trunk orientation information through a wearable tactile interface.
    Etzi R; Gallace A; Massetti G; D'Agostino M; Cinquetti V; Ferrise F; Bordegoni M
    Appl Ergon; 2020 Oct; 88():103176. PubMed ID: 32678783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Psychophysical principles of discrete event-driven vibrotactile feedback for prostheses.
    Karakuş İ; Güçlü B
    Somatosens Mot Res; 2020 Sep; 37(3):186-203. PubMed ID: 32448043
    [No Abstract]   [Full Text] [Related]  

  • 53. Intermanual Apparent Tactile Motion and Its Extension to 3D Interactions.
    Zhao S; Israr A; Fenner M; Klatzky RL
    IEEE Trans Haptics; 2017; 10(4):555-566. PubMed ID: 28320677
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles.
    Park WH; Shin EJ; Yun S; Kim SY
    IEEE Trans Haptics; 2018; 11(1):22-29. PubMed ID: 29611810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Data-Driven Sparse Skin Stimulation Can Convey Social Touch Information to Humans.
    Salvato M; R Williams S; M Nunez C; Zhu X; Israr A; Lau F; Klumb K; Abnousi F; M Okamura A; Culbertson H
    IEEE Trans Haptics; 2022; 15(2):392-404. PubMed ID: 34793305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lossy data compression of vibrotactile material-like textures.
    Okamoto S; Yamada Y
    IEEE Trans Haptics; 2013; 6(1):69-80. PubMed ID: 24808269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The use of natural language to communicate the perception of vibrotactile stimuli.
    Choi MH; Kim B; Kim HS; Jo JH; Chung SC
    Somatosens Mot Res; 2019 Mar; 36(1):42-48. PubMed ID: 30887857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wearable Assistive Tactile Communication Interface Based on Integrated Touch Sensors and Actuators.
    Ozioko O; Karipoth P; Hersh M; Dahiya R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1344-1352. PubMed ID: 32324558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Tactile Masking on Multi-Sensory Haptic Perception.
    Zook ZA; Fleck JJ; O'Malley MK
    IEEE Trans Haptics; 2022; 15(1):212-221. PubMed ID: 34529574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vibrotactile display design: Quantifying the importance of age and various factors on reaction times.
    Bao T; Su L; Kinnaird C; Kabeto M; Shull PB; Sienko KH
    PLoS One; 2019; 14(8):e0219737. PubMed ID: 31398207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.