BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38252636)

  • 1. Regulus infers signed regulatory relations from few samples' information using discretization and likelihood constraints.
    Louarn M; Collet G; Barré È; Fest T; Dameron O; Siegel A; Chatonnet F
    PLoS Comput Biol; 2024 Jan; 20(1):e1011816. PubMed ID: 38252636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data.
    Yang Y; Pe'er D
    Bioinformatics; 2024 Jun; 40(Supplement_1):i567-i575. PubMed ID: 38940155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving reusability along the data life cycle: a regulatory circuits case study.
    Louarn M; Chatonnet F; Garnier X; Fest T; Siegel A; Faron C; Dameron O
    J Biomed Semantics; 2022 Mar; 13(1):11. PubMed ID: 35346379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TF-centered downstream gene set enrichment analysis: Inference of causal regulators by integrating TF-DNA interactions and protein post-translational modifications information.
    Liu Q; Tan Y; Huang T; Ding G; Tu Z; Liu L; Li Y; Dai H; Xie L
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S5. PubMed ID: 21172055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using potential master regulator sites and paralogous expansion to construct tissue-specific transcriptional networks.
    Haubrock M; Li J; Wingender E
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S15. PubMed ID: 23282021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators.
    Farahmand S; O'Connor C; Macoska JA; Zarringhalam K
    Nucleic Acids Res; 2019 Dec; 47(22):11563-11573. PubMed ID: 31701125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying context-specific transcription factor targets from prior knowledge and gene expression data.
    Fertig EJ; Favorov AV; Ochs MF
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):142-9. PubMed ID: 23694699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
    Varala K; Marshall-Colón A; Cirrone J; Brooks MD; Pasquino AV; Léran S; Mittal S; Rock TM; Edwards MB; Kim GJ; Ruffel S; McCombie WR; Shasha D; Coruzzi GM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6494-6499. PubMed ID: 29769331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of context-specific gene regulatory networks with GEMULA--gene expression modeling using LAsso.
    Geeven G; van Kesteren RE; Smit AB; de Gunst MC
    Bioinformatics; 2012 Jan; 28(2):214-21. PubMed ID: 22106333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing dynamic regulatory programs in mouse lung development and their potential association with tumourigenesis via miRNA-TF-mRNA circuits.
    Liu J; Ye X; Wu FX
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S11. PubMed ID: 24564886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data.
    Li H; Zhan M
    Bioinformatics; 2008 Sep; 24(17):1874-80. PubMed ID: 18586698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling gene regulation from paired expression and chromatin accessibility data.
    Duren Z; Chen X; Jiang R; Wang Y; Wong WH
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):E4914-E4923. PubMed ID: 28576882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Footprinting Analyses from DNase-seq Data to Construct Gene Regulatory Networks.
    Moyano TC; Gutiérrez RA; Alvarez JM
    Methods Mol Biol; 2021; 2328():25-46. PubMed ID: 34251618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmark and integration of resources for the estimation of human transcription factor activities.
    Garcia-Alonso L; Holland CH; Ibrahim MM; Turei D; Saez-Rodriguez J
    Genome Res; 2019 Aug; 29(8):1363-1375. PubMed ID: 31340985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
    Chen X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    PLoS Comput Biol; 2021 Jul; 17(7):e1009203. PubMed ID: 34292930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.