These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38252812)
1. Fluorine-Free Lithium-Ion Capacitor with Enhanced Sustainability and Safety Based on Bio-Based ƴ-Valerolactone and Lithium Bis(Oxalato)Borate Electrolyte. Teoh KS; Melchiorre M; Darlami Magar S; Hermesdorf M; Leistenschneider D; Oschatz M; Ruffo F; Gómez Urbano JL; Balducci A Adv Mater; 2024 May; 36(18):e2310056. PubMed ID: 38252812 [TBL] [Abstract][Full Text] [Related]
2. Formulation and Recycling of a Novel Electrolyte Based on Bio-Derived γ-Valerolactone and Lithium Bis(trifluoromethanesulfonyl)imide for Lithium-Ion Batteries. Teoh KS; Melchiorre M; Darlami Magar S; Leibing C; Ruffo F; Gómez-Urbano JL; Balducci A Small; 2024 Oct; ():e2407850. PubMed ID: 39410723 [TBL] [Abstract][Full Text] [Related]
3. Understanding the Role of Imide-Based Salts and Borate-Based Additives for Safe and High-Performance Glyoxal-Based Electrolytes in Ni-Rich NMC Klein M; Binder M; Koželj M; Pierini A; Gouveia T; Diemant T; Schür A; Brutti S; Bodo E; Bresser D; Gómez-Urbano JL; Balducci A Small; 2024 Oct; 20(42):e2401610. PubMed ID: 38856970 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Stabilization of LiNi Zhao W; Zou L; Zheng J; Jia H; Song J; Engelhard MH; Wang C; Xu W; Yang Y; Zhang JG ChemSusChem; 2018 Jul; 11(13):2211-2220. PubMed ID: 29717541 [TBL] [Abstract][Full Text] [Related]
5. Impact of LiBOB additive on cycle-performance degradation of lithium mono-chelated borate electrolytes: minimize the crosstalk-derived deterioration. Takahashi M; Hesaka H; Tsutsumi H; Katayama Y RSC Adv; 2023 Aug; 13(37):25948-25958. PubMed ID: 37664197 [TBL] [Abstract][Full Text] [Related]
6. Unraveling the Dynamic Interfacial Behavior of LiCoO Hong M; Lee S; Ho VC; Lee D; Yu SH; Mun J ACS Appl Mater Interfaces; 2022 Mar; 14(8):10267-10276. PubMed ID: 35188752 [TBL] [Abstract][Full Text] [Related]
7. Nonflammable, Low-Cost, and Fluorine-Free Solvent for Liquid Electrolyte of Rechargeable Lithium Metal Batteries. Jin T; Wang Y; Hui Z; Qie B; Li A; Paley D; Xu B; Wang X; Chitu A; Zhai H; Gong T; Yang Y ACS Appl Mater Interfaces; 2019 May; 11(19):17333-17340. PubMed ID: 31013429 [TBL] [Abstract][Full Text] [Related]
8. All-in-All: Dead Lithium-Ion Battery to Active Lithium-Ion Capacitor. Manohar A; Viswanathan A; Lee YS; Aravindan V ChemSusChem; 2024 Jul; ():e202400449. PubMed ID: 39041945 [TBL] [Abstract][Full Text] [Related]
9. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. Xia L; Lee S; Jiang Y; Xia Y; Chen GZ; Liu Z ACS Omega; 2017 Dec; 2(12):8741-8750. PubMed ID: 31457404 [TBL] [Abstract][Full Text] [Related]
10. Iron-Based Electrodes Meet Water-Based Preparation, Fluorine-Free Electrolyte and Binder: A Chance for More Sustainable Lithium-Ion Batteries? Valvo M; Liivat A; Eriksson H; Tai CW; Edström K ChemSusChem; 2017 Jun; 10(11):2431-2448. PubMed ID: 28296133 [TBL] [Abstract][Full Text] [Related]
11. Effect of Lithium Borate Additives on Cathode Film Formation in LiNi Dong Y; Young BT; Zhang Y; Yoon T; Heskett DR; Hu Y; Lucht BL ACS Appl Mater Interfaces; 2017 Jun; 9(24):20467-20475. PubMed ID: 28562011 [TBL] [Abstract][Full Text] [Related]
12. Thermal Stability Analysis of Lithium-Ion Battery Electrolytes Based on Lithium Bis(trifluoromethanesulfonyl)imide-Lithium Difluoro(oxalato)Borate Dual-Salt. Yang YP; Huang AC; Tang Y; Liu YC; Wu ZH; Zhou HL; Li ZP; Shu CM; Jiang JC; Xing ZX Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652664 [TBL] [Abstract][Full Text] [Related]
13. An Ultralow-concentration and Moisture-resistant Electrolyte of Lithium Difluoro(oxalato)borate in Carbonate Solvents for Stable Cycling in Practical Lithium-ion Batteries. Liu Z; Hou W; Tian H; Qiu Q; Ullah I; Qiu S; Sun W; Yu Q; Yuan J; Xia L; Wu X Angew Chem Int Ed Engl; 2024 May; 63(19):e202400110. PubMed ID: 38484279 [TBL] [Abstract][Full Text] [Related]
14. Highly Oxidative-Resistant Cyano-Functionalized Lithium Borate Salt for Enhanced Cycling Performance of Practical Lithium-Ion Batteries. Min X; Han C; Zhang S; Ma J; Hu N; Li J; Du X; Xie B; Lin HJ; Kuo CY; Chen CT; Hu Z; Qiao L; Cui Z; Xu G; Cui G Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202302664. PubMed ID: 37349889 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the Reduction Mechanism of Lithium Bis(oxalato)borate. Melin T; Lundström R; Berg EJ J Phys Chem Lett; 2024 Mar; 15(9):2537-2541. PubMed ID: 38415593 [TBL] [Abstract][Full Text] [Related]
16. Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor. Cho EC; Chang-Jian CW; Lu CZ; Huang JH; Hsieh TH; Wu NJ; Lee KC; Hsu SC; Weng HC Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160564 [TBL] [Abstract][Full Text] [Related]
18. Elimination of Fluorination: The Influence of Fluorine-Free Electrolytes on the Performance of LiNi Hernández G; Naylor AJ; Chien YC; Brandell D; Mindemark J; Edström K ACS Sustain Chem Eng; 2020 Jul; 8(27):10041-10052. PubMed ID: 32953284 [TBL] [Abstract][Full Text] [Related]
19. A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO Wang S; Wang Q; Zeng W; Wang M; Ruan L; Ma Y Nanomicro Lett; 2019 Aug; 11(1):70. PubMed ID: 34138022 [TBL] [Abstract][Full Text] [Related]
20. Coprecipitation Reaction System Synthesis and Lithium-Ion Capacitor Energy Storage Application of the Porous Structural Bimetallic Sulfide CoMoS Wang YK; Zhang WB; Zhao Y; Li K; Kong LB ACS Omega; 2018 Aug; 3(8):8803-8812. PubMed ID: 31459013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]