BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 38252832)

  • 41. Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors.
    Chen YC; Chiang CF; Wu SK; Chen LF; Hsieh WY; Lin WL
    J Control Release; 2015 Aug; 211():53-62. PubMed ID: 26047759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactive oxidative species (ROS)-based nanomedicine for BBB crossing and glioma treatment: current status and future directions.
    Wu D; Chen X; Zhou S; Li B
    Front Immunol; 2023; 14():1241791. PubMed ID: 37731484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin.
    Yu Y; Jiang X; Gong S; Feng L; Zhong Y; Pang Z
    Nanoscale; 2014 Mar; 6(6):3250-8. PubMed ID: 24503971
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain.
    Anraku Y; Kuwahara H; Fukusato Y; Mizoguchi A; Ishii T; Nitta K; Matsumoto Y; Toh K; Miyata K; Uchida S; Nishina K; Osada K; Itaka K; Nishiyama N; Mizusawa H; Yamasoba T; Yokota T; Kataoka K
    Nat Commun; 2017 Oct; 8(1):1001. PubMed ID: 29042554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoscale drug delivery systems and the blood-brain barrier.
    Alyautdin R; Khalin I; Nafeeza MI; Haron MH; Kuznetsov D
    Int J Nanomedicine; 2014; 9():795-811. PubMed ID: 24550672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma.
    Wang H; Chao Y; Zhao H; Zhou X; Zhang F; Zhang Z; Li Z; Pan J; Wang J; Chen Q; Liu Z
    ACS Nano; 2022 Jan; 16(1):664-674. PubMed ID: 34978418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection.
    Karatas H; Aktas Y; Gursoy-Ozdemir Y; Bodur E; Yemisci M; Caban S; Vural A; Pinarbasli O; Capan Y; Fernandez-Megia E; Novoa-Carballal R; Riguera R; Andrieux K; Couvreur P; Dalkara T
    J Neurosci; 2009 Nov; 29(44):13761-9. PubMed ID: 19889988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy.
    Xu G; Mahajan S; Roy I; Yong KT
    Front Pharmacol; 2013 Nov; 4():140. PubMed ID: 24298256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines.
    Pérez-López A; Torres-Suárez AI; Martín-Sabroso C; Aparicio-Blanco J
    Adv Drug Deliv Rev; 2023 May; 196():114816. PubMed ID: 37003488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasound-mediated blood-brain barrier opening: An effective drug delivery system for theranostics of brain diseases.
    Wang J; Li Z; Pan M; Fiaz M; Hao Y; Yan Y; Sun L; Yan F
    Adv Drug Deliv Rev; 2022 Nov; 190():114539. PubMed ID: 36116720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy.
    Wang L; Shi Y; Jiang J; Li C; Zhang H; Zhang X; Jiang T; Wang L; Wang Y; Feng L
    Small; 2022 Nov; 18(45):e2203678. PubMed ID: 36103614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-resolution Confocal Imaging of the Blood-brain Barrier: Imaging, 3D Reconstruction, and Quantification of Transcytosis.
    Villaseñor R; Collin L
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imaging and nanomedicine for diagnosis and therapy in the central nervous system: report of the eleventh annual Blood-Brain Barrier Disruption Consortium meeting.
    Muldoon LL; Tratnyek PG; Jacobs PM; Doolittle ND; Christoforidis GA; Frank JA; Lindau M; Lockman PR; Manninger SP; Qiang Y; Spence AM; Stupp SI; Zhang M; Neuwelt EA
    AJNR Am J Neuroradiol; 2006 Mar; 27(3):715-21. PubMed ID: 16552023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mucus barrier-triggered disassembly of siRNA nanocarriers.
    Thomsen TB; Li L; Howard KA
    Nanoscale; 2014 Nov; 6(21):12547-54. PubMed ID: 25179224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine.
    Agwa MM; Sabra S
    Int J Biol Macromol; 2021 Jan; 167():1527-1543. PubMed ID: 33212102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The battle of lipid-based nanocarriers against blood-brain barrier: a critical review.
    Abla KK; Mehanna MM
    J Drug Target; 2023 Sep; 31(8):832-857. PubMed ID: 37577919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases.
    Furtado D; Björnmalm M; Ayton S; Bush AI; Kempe K; Caruso F
    Adv Mater; 2018 Nov; 30(46):e1801362. PubMed ID: 30066406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of Surface Ligand Density and Particle Size on the Penetration of the Blood-Brain Barrier by Porous Silicon Nanoparticles.
    Zhang W; Zhu D; Tong Z; Peng B; Cheng X; Esser L; Voelcker NH
    Pharmaceutics; 2023 Sep; 15(9):. PubMed ID: 37765240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.
    Fornaguera C; Dols-Perez A; Calderó G; García-Celma MJ; Camarasa J; Solans C
    J Control Release; 2015 Aug; 211():134-43. PubMed ID: 26057857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potential Use of Nanomedicine for Drug Delivery Across the Blood-Brain Barrier in Healthy and Diseased Brain.
    Ruozi B; Belletti D; Pederzoli F; Forni F; Vandelli MA; Tosi G
    CNS Neurol Disord Drug Targets; 2016; 15(9):1079-1091. PubMed ID: 27633786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.