BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38253029)

  • 21. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
    Mace TA; Shakya R; Pitarresi JR; Swanson B; McQuinn CW; Loftus S; Nordquist E; Cruz-Monserrate Z; Yu L; Young G; Zhong X; Zimmers TA; Ostrowski MC; Ludwig T; Bloomston M; Bekaii-Saab T; Lesinski GB
    Gut; 2018 Feb; 67(2):320-332. PubMed ID: 27797936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic autophagy blockade and VDR signaling activation enhance stellate cell reprogramming in pancreatic ductal adenocarcinoma.
    Kong W; Liu Z; Sun M; Liu H; Kong C; Ma J; Wang R; Qian F
    Cancer Lett; 2022 Jul; 539():215718. PubMed ID: 35526650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NDRG1 overcomes resistance to immunotherapy of pancreatic ductal adenocarcinoma through inhibiting ATG9A-dependent degradation of MHC-1.
    Zhang Z; Song B; Wei H; Liu Y; Zhang W; Yang Y; Sun B
    Drug Resist Updat; 2024 Mar; 73():101040. PubMed ID: 38228036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sono-promoted drug penetration and extracellular matrix modulation potentiate sonodynamic therapy of pancreatic ductal adenocarcinoma.
    Xiao H; Li X; Li B; Zhong Y; Qin J; Wang Y; Han S; Ren J; Shuai X
    Acta Biomater; 2023 Apr; 161():265-274. PubMed ID: 36893956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DPP inhibition alters the CXCR3 axis and enhances NK and CD8+ T cell infiltration to improve anti-PD1 efficacy in murine models of pancreatic ductal adenocarcinoma.
    Fitzgerald AA; Wang S; Agarwal V; Marcisak EF; Zuo A; Jablonski SA; Loth M; Fertig EJ; MacDougall J; Zhukovsky E; Trivedi S; Bhatia D; O'Neill V; Weiner LM
    J Immunother Cancer; 2021 Nov; 9(11):. PubMed ID: 34737215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remodeling of Stromal Immune Microenvironment by Urolithin A Improves Survival with Immune Checkpoint Blockade in Pancreatic Cancer.
    Mehra S; Garrido VT; Dosch AR; Lamichhane P; Srinivasan S; Singh SP; Zhou Z; De Castro Silva I; Joshi C; Ban Y; Datta J; Gilboa E; Merchant NB; Nagathihalli NS
    Cancer Res Commun; 2023 Jul; 3(7):1224-1236. PubMed ID: 37448553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy.
    Ding M; Fan Y; Lv Y; Liu J; Yu N; Kong D; Sun H; Li J
    Acta Biomater; 2022 Sep; 149():334-346. PubMed ID: 35779775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer.
    Ye J; Mills BN; Qin SS; Garrett-Larsen J; Murphy JD; Uccello TP; Han BJ; Vrooman TG; Johnston CJ; Lord EM; Belt BA; Linehan DC; Gerber SA
    J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35851308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring in vivo combinatorial chemo-immunotherapy: Addressing p97 suppression and immune reinvigoration in pancreatic cancer with tumor microenvironment-responsive nanoformulation.
    Lo YL; Li CY; Chou TF; Yang CP; Wu LL; Chen CJ; Chang YH
    Biomed Pharmacother; 2024 Jun; 175():116660. PubMed ID: 38701563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptor-interacting Protein Kinase 2 Is an Immunotherapy Target in Pancreatic Cancer.
    Sang W; Zhou Y; Chen H; Yu C; Dai L; Liu Z; Chen L; Fang Y; Ma P; Wu X; Kong H; Liao W; Jiang H; Qian J; Wang D; Liu YH
    Cancer Discov; 2024 Feb; 14(2):326-347. PubMed ID: 37824278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signal Transducer and Activator of Transcription 3, Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer.
    Nagathihalli NS; Castellanos JA; Shi C; Beesetty Y; Reyzer ML; Caprioli R; Chen X; Walsh AJ; Skala MC; Moses HL; Merchant NB
    Gastroenterology; 2015 Dec; 149(7):1932-1943.e9. PubMed ID: 26255562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Future of immunotherapy in pancreas cancer and the trials, tribulations and successes thus far.
    Wong W; Alouani E; Wei A; Ryu YK; Chabot JA; Manji GA
    Semin Oncol; 2021 Feb; 48(1):57-68. PubMed ID: 33965249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An ultrasound-activated nanoplatform remodels tumor microenvironment through diverse cell death induction for improved immunotherapy.
    Ma J; Yuan H; Zhang J; Sun X; Yi L; Li W; Li Z; Fu C; Zheng L; Xu X; Wang X; Wang F; Yin D; Yuan J; Xu C; Li Z; Peng X; Wang J
    J Control Release; 2024 Jun; 370():501-515. PubMed ID: 38703950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer.
    Cappellesso F; Orban MP; Shirgaonkar N; Berardi E; Serneels J; Neveu MA; Di Molfetta D; Piccapane F; Caroppo R; Debellis L; Ostyn T; Joudiou N; Mignion L; Richiardone E; Jordan BF; Gallez B; Corbet C; Roskams T; DasGupta R; Tejpar S; Di Matteo M; Taverna D; Reshkin SJ; Topal B; Virga F; Mazzone M
    Nat Cancer; 2022 Dec; 3(12):1464-1483. PubMed ID: 36522548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OX40L-Armed Oncolytic Virus Boosts T-cell Response and Remodels Tumor Microenvironment for Pancreatic Cancer Treatment.
    Liu S; Li F; Ma Q; Du M; Wang H; Zhu Y; Deng L; Gao W; Wang C; Liu Y; Zhao Z; Liu H; Wang R; Tian Y; Hu M; Wan Y; Lu W; Zhang M; Zhao M; Cao Y; Zhang H; Wang W; Wang H; Wang Y
    Theranostics; 2023; 13(12):4016-4029. PubMed ID: 37554264
    [No Abstract]   [Full Text] [Related]  

  • 36. Defining the spatial distribution of extracellular adenosine revealed a myeloid-dependent immunosuppressive microenvironment in pancreatic ductal adenocarcinoma.
    Graziano V; Dannhorn A; Hulme H; Williamson K; Buckley H; Karim SA; Wilson M; Lee SY; Kaistha BP; Islam S; Thaventhiran JED; Richards FM; Goodwin R; Brais R; Morton JP; Dovedi SJ; Schuller AG; Eyles J; Jodrell DI
    J Immunother Cancer; 2023 Aug; 11(8):. PubMed ID: 37553182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting MFAP5 in cancer-associated fibroblasts sensitizes pancreatic cancer to PD-L1-based immunochemotherapy via remodeling the matrix.
    Duan Y; Zhang X; Ying H; Xu J; Yang H; Sun K; He L; Li M; Ji Y; Liang T; Bai X
    Oncogene; 2023 Jun; 42(25):2061-2073. PubMed ID: 37156839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Tumor-Penetrating Nanomedicine Improves the Chemoimmunotherapy of Pancreatic Cancer.
    Tong QS; Miao WM; Huang H; Luo JQ; Liu R; Huang YC; Zhao DK; Shen S; Du JZ; Wang J
    Small; 2021 Jul; 17(29):e2101208. PubMed ID: 34145747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment.
    Nakkina SP; Gitto SB; Beardsley JM; Pandey V; Rohr MW; Parikh JG; Phanstiel O; Altomare DA
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy.
    Wang M; He M; Zhang M; Xue S; Xu T; Zhao Y; Li D; Zhi F; Ding D
    Biomaterials; 2023 Oct; 301():122257. PubMed ID: 37531778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.