These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38253415)

  • 1. Fisher's Geometric Model as a Tool to Study Speciation.
    Schneemann H; De Sanctis B; Welch JJ
    Cold Spring Harb Perspect Biol; 2024 Jul; 16(7):. PubMed ID: 38253415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetics of speciation: Insights from Fisher's geometric model.
    Fraïsse C; Gunnarsson PA; Roze D; Bierne N; Welch JJ
    Evolution; 2016 Jul; 70(7):1450-64. PubMed ID: 27252049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The geometry and genetics of hybridization.
    Schneemann H; De Sanctis B; Roze D; Bierne N; Welch JJ
    Evolution; 2020 Dec; 74(12):2575-2590. PubMed ID: 33150956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of selected mutations and genotypic landscapes under Fisher's geometric model.
    Blanquart F; Achaz G; Bataillon T; Tenaillon O
    Evolution; 2014 Dec; 68(12):3537-54. PubMed ID: 25311558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epistasis and the Structure of Fitness Landscapes: Are Experimental Fitness Landscapes Compatible with Fisher's Geometric Model?
    Blanquart F; Bataillon T
    Genetics; 2016 Jun; 203(2):847-62. PubMed ID: 27052568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of hybrid fitness during speciation.
    Dagilis AJ; Kirkpatrick M; Bolnick DI
    PLoS Genet; 2019 May; 15(5):e1008125. PubMed ID: 31059513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights from Fisher's geometric model on the likelihood of speciation under different histories of environmental change.
    Yamaguchi R; Otto SP
    Evolution; 2020 Aug; 74(8):1603-1619. PubMed ID: 32542705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genomic perspective on hybridization and speciation.
    Payseur BA; Rieseberg LH
    Mol Ecol; 2016 Jun; 25(11):2337-60. PubMed ID: 26836441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diverse effects of phenotypic dominance on hybrid fitness.
    Schneemann H; Munzur AD; Thompson KA; Welch JJ
    Evolution; 2022 Dec; 76(12):2846-2863. PubMed ID: 36221216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization alters the shape of the genotypic fitness landscape, increasing access to novel fitness peaks during adaptive radiation.
    Patton AH; Richards EJ; Gould KJ; Buie LK; Martin CH
    Elife; 2022 May; 11():. PubMed ID: 35616528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-locus interactions and the build-up of reproductive isolation.
    Satokangas I; Martin SH; Helanterä H; Saramäki J; Kulmuni J
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1806):20190543. PubMed ID: 32654649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of hybrid incompatibilities along a phylogeny.
    Wang RJ; Ané C; Payseur BA
    Evolution; 2013 Oct; 67(10):2905-22. PubMed ID: 24094342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.
    Martin G
    Genetics; 2014 May; 197(1):237-55. PubMed ID: 24583582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic Complexity of Fisher's Geometric Model.
    Hwang S; Park SC; Krug J
    Genetics; 2017 Jun; 206(2):1049-1079. PubMed ID: 28450460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns.
    Simon A; Bierne N; Welch JJ
    Evol Lett; 2018 Oct; 2(5):472-498. PubMed ID: 30283696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Male competition fitness landscapes predict both forward and reverse speciation.
    Keagy J; Lettieri L; Boughman JW
    Ecol Lett; 2016 Jan; 19(1):71-80. PubMed ID: 26612568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pace of Hybrid Incompatibility Evolution in House Mice.
    Wang RJ; White MA; Payseur BA
    Genetics; 2015 Sep; 201(1):229-42. PubMed ID: 26199234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones.
    Harrison RG; Larson EL
    Mol Ecol; 2016 Jun; 25(11):2454-66. PubMed ID: 26857437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Boolean gene regulatory model of heterosis and speciation.
    Emmrich PM; Roberts HE; Pancaldi V
    BMC Evol Biol; 2015 Feb; 15():24. PubMed ID: 25888139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiraling Complexity: A Test of the Snowball Effect in a Computational Model of RNA Folding.
    Kalirad A; Azevedo RBR
    Genetics; 2017 May; 206(1):377-388. PubMed ID: 28007889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.