These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 38253531)

  • 1. Causal Influence of Linguistic Learning on Perceptual and Conceptual Processing: A Brain-Constrained Deep Neural Network Study of Proper Names and Category Terms.
    Nguyen PTU; Henningsen-Schomers MR; Pulvermüller F
    J Neurosci; 2024 Feb; 44(9):. PubMed ID: 38253531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling concrete and abstract concepts using brain-constrained deep neural networks.
    Henningsen-Schomers MR; Pulvermüller F
    Psychol Res; 2022 Nov; 86(8):2533-2559. PubMed ID: 34762152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of language on perception and concept formation in a brain-constrained deep neural network model.
    Henningsen-Schomers MR; Garagnani M; Pulvermüller F
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1870):20210373. PubMed ID: 36571136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks.
    Pulvermüller F
    Prog Neurobiol; 2023 Nov; 230():102511. PubMed ID: 37482195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords.
    Garagnani M; Lucchese G; Tomasello R; Wennekers T; Pulvermüller F
    Front Comput Neurosci; 2016; 10():145. PubMed ID: 28149276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Neurobiologically Constrained Cortex Model of Semantic Grounding With Spiking Neurons and Brain-Like Connectivity.
    Tomasello R; Garagnani M; Wennekers T; Pulvermüller F
    Front Comput Neurosci; 2018; 12():88. PubMed ID: 30459584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Category-Biased Neural Representations Form Spontaneously during Learning That Emphasizes Memory for Specific Instances.
    Ashby SR; Zeithamova D
    J Neurosci; 2022 Feb; 42(5):865-876. PubMed ID: 34937702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing.
    Dominey PF; Inui T; Hoen M
    Brain Lang; 2009; 109(2-3):80-92. PubMed ID: 18835637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conceptual grounding of language in action and perception: a neurocomputational model of the emergence of category specificity and semantic hubs.
    Garagnani M; Pulvermüller F
    Eur J Neurosci; 2016 Mar; 43(6):721-37. PubMed ID: 26660067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network model of the effect of prior experience with regularities on subsequent category learning.
    Roark CL; Plaut DC; Holt LL
    Cognition; 2022 May; 222():104997. PubMed ID: 35007885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex.
    Tomasello R; Garagnani M; Wennekers T; Pulvermüller F
    Neuropsychologia; 2017 Apr; 98():111-129. PubMed ID: 27394150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the state space of a simple recurrent network before and after training on recursive linguistic structures.
    Cernanský M; Makula M; Benusková L
    Neural Netw; 2007 Mar; 20(2):236-44. PubMed ID: 16687236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment.
    Pulvermüller F; Garagnani M
    Cortex; 2014 Aug; 57():1-21. PubMed ID: 24769063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Encoding and Decoding With Distributed Sentence Representations.
    Sun J; Wang S; Zhang J; Zong C
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):589-603. PubMed ID: 33052868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrastive Similarity Matching for Supervised Learning.
    Qin S; Mudur N; Pehlevan C
    Neural Comput; 2021 Apr; 33(5):1300-1328. PubMed ID: 33617744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding categories through words: More nameable features improve category learning.
    Zettersten M; Lupyan G
    Cognition; 2020 Mar; 196():104135. PubMed ID: 31821963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation of categories and the representation of feature saliency: analysis with a computational model trained with an Hebbian paradigm.
    Ursino M; Cuppini C; Magosso E
    J Integr Neurosci; 2013 Dec; 12(4):401-25. PubMed ID: 24372062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.