BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38253556)

  • 1. A blinded study using laser induced endogenous fluorescence spectroscopy to differentiate ex vivo spine tumor, healthy muscle, and healthy bone.
    Sperber J; Zachem TJ; Prakash R; Owolo E; Yamamoto K; Nguyen AD; Hockenberry H; Ross WA; Herndon JE; Codd PJ; Goodwin CR
    Sci Rep; 2024 Jan; 14(1):1921. PubMed ID: 38253556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser induced fluorescence spectroscopy analysis of kidney tissues: A pilot study for the identification of renal cell carcinoma.
    Pavithran M S; Lukose J; Barik BK; Periasami A; Kartha VB; Chawla A; Chidangil S
    J Biophotonics; 2023 Nov; 16(11):e202300021. PubMed ID: 37589180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast.
    Conklin MW; Provenzano PP; Eliceiri KW; Sullivan R; Keely PJ
    Cell Biochem Biophys; 2009; 53(3):145-57. PubMed ID: 19259625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic potential of laser-induced autofluorescence emission in brain tissue.
    Chung YG; Schwartz JA; Gardner CM; Sawaya RE; Jacques SL
    J Korean Med Sci; 1997 Apr; 12(2):135-42. PubMed ID: 9170019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of normal and cancerous human skin tissues based on laser-induced spectral shift fluorescence microscopy.
    Niazi A; Parvin P; Jafargholi A; Basam MA; Khodabakhshi Z; Bavali A; Kamyab Hesari K; Sohrabizadeh Z; Hassanzadeh T; Shirafkan Dizaj L; Amiri R; Heidari O; Aghaei M; Atyabi F; Ehtesham A; Moafi A
    Sci Rep; 2022 Dec; 12(1):20927. PubMed ID: 36463297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality.
    Parekh DJ; Lin WC; Herrell SD
    J Urol; 2005 Nov; 174(5):1754-8. PubMed ID: 16217277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence lifetime spectroscopy of glioblastoma multiforme.
    Marcu L; Jo JA; Butte PV; Yong WH; Pikul BK; Black KL; Thompson RC
    Photochem Photobiol; 2004; 80():98-103. PubMed ID: 15339216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and evaluation of normal and malignant cells using laser-induced fluorescence spectroscopy.
    Khosroshahi ME; Rahmani M
    J Fluoresc; 2012 Jan; 22(1):281-8. PubMed ID: 21901392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on the autofluorescence spectroscopy in rats doing medium-intensity exercise].
    Ren WJ; Xu ZH; Zhang ZX; Yang XD; Li Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1331-5. PubMed ID: 19650483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autofluorescence excitation-emission matrices for diagnosis of colonic cancer.
    Li BH; Xie SS
    World J Gastroenterol; 2005 Jul; 11(25):3931-4. PubMed ID: 15991296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue.
    Huang Z; Zheng W; Xie S; Chen R; Zeng H; McLean DI; Lui H
    Int J Oncol; 2004 Jan; 24(1):59-63. PubMed ID: 14654941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative auto-fluorescence quenching of free and bound NADH in HeLa cell line model with Carbonyl cyanide-p-Trifluoromethoxy phenylhydrazone (FCCP) as quenching agent.
    Rehman AU; Qureshi SA
    Photodiagnosis Photodyn Ther; 2022 Sep; 39():102954. PubMed ID: 35690321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins.
    Poon WS; Schomacker KT; Deutsch TF; Martuza RL
    J Neurosurg; 1992 Apr; 76(4):679-86. PubMed ID: 1545262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced fluorescence spectroscopy: a potential diagnostic tool for oral neoplasia.
    Chen CT; Wang CY; Kuo YS; Chiang HH; Chow SN; Hsiao IY; Chiang CP
    Proc Natl Sci Counc Repub China B; 1996 Oct; 20(4):123-30. PubMed ID: 9050258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser induced fluorescence identification of sinoatrial and atrioventricular nodal conduction tissue.
    Perk M; Flynn GJ; Gulamhusein S; Wen Y; Smith C; Bathgate B; Tulip J; Parfrey NA; Lucas A
    Pacing Clin Electrophysiol; 1993 Aug; 16(8):1701-12. PubMed ID: 7690939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging.
    Deal J; Mayes S; Browning C; Hill S; Rider P; Boudreaux C; Rich TC; Leavesley SJ
    J Biomed Opt; 2018 Dec; 24(2):1-11. PubMed ID: 30592190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.