These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38253829)

  • 21. Multiregional input-output model for China's farm land and water use.
    Guo S; Shen GQ
    Environ Sci Technol; 2015 Jan; 49(1):403-14. PubMed ID: 25486067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Worse than imagined: Unidentified virtual water flows in China.
    Cai B; Wang C; Zhang B
    J Environ Manage; 2017 Jul; 196():681-691. PubMed ID: 28365554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water footprint and virtual water trade analysis in water-rich basins: Case of the Chaohu Lake Basin in China.
    Chen Y; Wang Y; Ding T; Wang K; Wu H
    Sci Total Environ; 2022 Oct; 843():156906. PubMed ID: 35753485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical and virtual water transfers for regional water stress alleviation in China.
    Zhao X; Liu J; Liu Q; Tillotson MR; Guan D; Hubacek K
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1031-5. PubMed ID: 25583516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global spatio-temporal change assessment in interregional water stress footprint in China by a high resolution MRIO model.
    Zhao H; Miller TR; Ishii N; Kawasaki A
    Sci Total Environ; 2022 Oct; 841():156682. PubMed ID: 35710018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplex dependence analysis of China's interprovincial virtual water based on an ecological network.
    Wang H; Ren B; Ma N; Li H
    Environ Sci Pollut Res Int; 2024 May; 31(22):32016-32032. PubMed ID: 38642228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the virtual water trade in water-scarce basin: an environmentally extended input-output analysis in the Yellow River Basin of China.
    Zhang B; Niu N; Li H; Tao HW; Wang ZH
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118396-118409. PubMed ID: 37910368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tension of Agricultural Land and Water Use in China's Trade: Tele-Connections, Hidden Drivers and Potential Solutions.
    Cai B; Hubacek K; Feng K; Zhang W; Wang F; Liu Y
    Environ Sci Technol; 2020 May; 54(9):5365-5375. PubMed ID: 32195586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon footprint and water footprint in China: Similarities and differences.
    Wang Q; Ge S
    Sci Total Environ; 2020 Oct; 739():140070. PubMed ID: 32758954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the relationship between water and energy in China based on a multi-regional input-output method.
    Zhang K; Lu H; Tian P; Guan Y; Kang Y; He L; Fan X
    J Environ Manage; 2022 May; 309():114680. PubMed ID: 35168132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relations between physical and ecosystem service flows of freshwater are critical for water resource security in large dryland river basin.
    Sun S; Lü Y; Fu B
    Sci Total Environ; 2023 Jan; 857(Pt 3):159549. PubMed ID: 36265644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Managing Scarce Water Resources in China's Coal Power Industry.
    Zhang C; Zhong L; Fu X; Zhao Z
    Environ Manage; 2016 Jun; 57(6):1188-203. PubMed ID: 26908125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Telecoupling China's City-Level Water Withdrawal with Distant Consumption.
    Li J; Huang K; Yu Y; Qu S; Xu M
    Environ Sci Technol; 2023 Mar; 57(10):4332-4341. PubMed ID: 36857490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying the critical transmission sectors with energy-water nexus pressures in China's supply chain networks.
    Li Y; Yang L; Wang D; Zhou Y; He W; Li B; Yang Y; Lv H
    J Environ Manage; 2021 Jul; 289():112518. PubMed ID: 33839607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Balancing water resource conservation and food security in China.
    Dalin C; Qiu H; Hanasaki N; Mauzerall DL; Rodriguez-Iturbe I
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4588-93. PubMed ID: 25825748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can virtual water trade save water resources?
    Liu X; Du H; Zhang Z; Crittenden JC; Lahr ML; Moreno-Cruz J; Guan D; Mi Z; Zuo J
    Water Res; 2019 Oct; 163():114848. PubMed ID: 31352242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. China's coal consumption in a globalizing world: Insights from Multi-Regional Input-Output and structural decomposition analysis.
    Wang Q; Song X; Liu Y
    Sci Total Environ; 2020 Apr; 711():134790. PubMed ID: 32000324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water transfer infrastructure buffers water scarcity risks to supply chains.
    Sun S; Tang Q; Konar M; Fang C; Liu H; Liu X; Fu G
    Water Res; 2023 Feb; 229():119442. PubMed ID: 36473410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Explaining virtual water trade: A spatial-temporal analysis of the comparative advantage of land, labor and water in China.
    Zhao D; Hubacek K; Feng K; Sun L; Liu J
    Water Res; 2019 Apr; 153():304-314. PubMed ID: 30738227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.