These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38253829)

  • 41. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.
    Qian Y; Dong H; Geng Y; Zhong S; Tian X; Yu Y; Chen Y; Moss DA
    Water Res; 2018 Sep; 141():208-216. PubMed ID: 29793160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [A virtual water analysis for agricultural production and food security].
    Ke B; Liu WH; Duan GM; Yan Y; Deng HB; Zhao JZ
    Huan Jing Ke Xue; 2004 Mar; 25(2):32-6. PubMed ID: 15202230
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries.
    Feng B; Zhuo L; Mekonnen MM; Marston LT; Yang X; Xu Z; Liu Y; Wang W; Li Z; Li M; Ji X; Wu P
    Water Res; 2022 Aug; 221():118803. PubMed ID: 35809385
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.
    Acquaye A; Feng K; Oppon E; Salhi S; Ibn-Mohammed T; Genovese A; Hubacek K
    J Environ Manage; 2017 Feb; 187():571-585. PubMed ID: 27876164
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global food trade alleviates transgressions of planetary boundaries at the national scale.
    Liao X; Liu A; Chai L
    iScience; 2023 Oct; 26(10):107794. PubMed ID: 37720085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. China's water scarcity.
    Jiang Y
    J Environ Manage; 2009 Aug; 90(11):3185-96. PubMed ID: 19539423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. China's dietary changes would increase agricultural blue and green water footprint.
    Liu L; Hu X; Zhan Y; Sun Z; Zhang Q
    Sci Total Environ; 2023 Dec; 903():165763. PubMed ID: 37527706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Projecting China's future water footprint under the shared socio-economic pathways.
    Xu X; Zhang Y; Chen Y
    J Environ Manage; 2020 Apr; 260():110102. PubMed ID: 31941633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Relating briefly the natural resources and the population problems of China].
    Lian Y
    Renkou Yanjiu; 1983 Jan; (1):17-22. PubMed ID: 12312933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An insight into the drag effect of water, land, and energy on economic growth across space and time: the application of improved Solow growth model.
    Zhang Y; Liu W; Khan SU; Swallow B; Zhou C; Zhao M
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6886-6899. PubMed ID: 34462855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing Transboundary Impacts of Energy-Driven Water Footprint on Scarce Water Resources in China: Catchments under Stress and Mitigation Options.
    Liu X; Du H; Zhang X; Feng K; Zhao X; Zhong H; Zhang N; Chen Z
    Environ Sci Technol; 2023 Jul; 57(26):9639-9652. PubMed ID: 37344372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrating the Water Planetary Boundary With Water Management From Local to Global Scales.
    Zipper SC; Jaramillo F; Wang-Erlandsson L; Cornell SE; Gleeson T; Porkka M; Häyhä T; Crépin AS; Fetzer I; Gerten D; Hoff H; Matthews N; Ricaurte-Villota C; Kummu M; Wada Y; Gordon L
    Earths Future; 2020 Feb; 8(2):e2019EF001377. PubMed ID: 32715010
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The "Gravity" for global virtual water flows: From quantity and quality perspectives.
    Hou S; Xu M; Qu S
    J Environ Manage; 2023 Mar; 329():116984. PubMed ID: 36563441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactive national virtual water-energy nexus networks.
    Xu Z; Li Y; Herzberger A; Chen X; Gong M; Kapsar K; Hovis C; Whyte J; Tang Y; Li Y; Liu J
    Sci Total Environ; 2019 Jul; 673():128-135. PubMed ID: 30981920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Water security assessment with the improvement of modifying the boundary consistency between footprint and provision.
    Liang Y; Cai Y; Wang X; Li C; Liu Q
    Sci Total Environ; 2021 Dec; 801():149639. PubMed ID: 34418618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Limited water scarcity mitigation by expanded interbasin physical and virtual water diversions with uneven economic value added in China.
    Wang W; Zhuo L; Rulli MC; Wu P
    Sci Total Environ; 2022 Nov; 847():157625. PubMed ID: 35901876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluating drivers and flow patterns of inter-provincial grain virtual water trade in China.
    Qian H; Engel BA; Tian X; Sun S; Wu P; Wang Y
    Sci Total Environ; 2020 Aug; 732():139251. PubMed ID: 32442770
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trend analysis and obstacle factor of inter provincial water resources carrying capacity in China: from the perspective of decoupling pressure and support capacity.
    Sun W; Zhang Y; Chen H; Zhu L; Wang Y
    Environ Sci Pollut Res Int; 2022 May; 29(21):31551-31566. PubMed ID: 35006564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regional differences and dynamic evolution of agricultural water resources utilization efficiency in China.
    Zeng Q; Cao S; H E J
    PLoS One; 2023; 18(9):e0282051. PubMed ID: 37768897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.