These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38253934)

  • 1. The role of vision in sensory integration models for predicting motion perception and sickness.
    Kotian V; Irmak T; Pool D; Happee R
    Exp Brain Res; 2024 Mar; 242(3):685-725. PubMed ID: 38253934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neck stabilization through sensory integration of vestibular and visual motion cues.
    Happee R; Kotian V; De Winkel KN
    Front Neurol; 2023; 14():1266345. PubMed ID: 38073639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual motion perception parameters and motion sickness frequency sensitivity in fore-aft motion.
    Irmak T; de Winkel KN; Pool DM; Bülthoff HH; Happee R
    Exp Brain Res; 2021 Jun; 239(6):1727-1745. PubMed ID: 33779793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion sickness induced by off-vertical axis rotation (OVAR).
    Dai M; Sofroniou S; Kunin M; Raphan T; Cohen B
    Exp Brain Res; 2010 Jul; 204(2):207-22. PubMed ID: 20535456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validating models of sensory conflict and perception for motion sickness prediction.
    Irmak T; Pool DM; de Winkel KN; Happee R
    Biol Cybern; 2023 Jun; 117(3):185-209. PubMed ID: 36971844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perception threshold of the vestibular Coriolis illusion.
    Houben MMJ; Meskers AJH; Bos JE; Groen EL
    J Vestib Res; 2022; 32(4):317-324. PubMed ID: 34924407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roll motion stimuli: sensory conflict, perceptual weighting and motion sickness.
    de Graaf B; Bles W; Bos JE
    Brain Res Bull; 1998 Nov; 47(5):489-95. PubMed ID: 10052579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optokinetic drum tilt hastens the onset of vection-induced motion sickness.
    Bubka A; Bonato F
    Aviat Space Environ Med; 2003 Apr; 74(4):315-9. PubMed ID: 12688448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating Flight Illusions Using Galvanic Vestibular Stimulation in Virtual Reality Flight Simulations.
    Pradhan GN; Galvan-Garza R; Perez AM; Bogle J; Cevette MJ
    Front Neuroergon; 2022; 3():883962. PubMed ID: 38235479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency effect of 0.35-1.0 Hz horizontal translational oscillation on motion sickness and the somatogravic illusion.
    Golding JF; Finch MI; Stott JR
    Aviat Space Environ Med; 1997 May; 68(5):396-402. PubMed ID: 9143749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time constant of the somatogravic illusion.
    Correia Grácio BJ; de Winkel KN; Groen EL; Wentink M; Bos JE
    Exp Brain Res; 2013 Feb; 224(3):313-21. PubMed ID: 23124839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Visual-Vestibular Model to Predict Motion Sickness for Linear and Angular Motion.
    Sousa Schulman D; Jalgaonkar N; Ojha S; Rivero Valles A; Jones MLH; Awtar S
    Hum Factors; 2024 Aug; 66(8):2120-2137. PubMed ID: 37699250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of motion sickness dynamics during passive self-motion in the dark.
    Allred AR; Clark TK
    Exp Brain Res; 2024 May; 242(5):1127-1148. PubMed ID: 38489025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotation velocity change and motion sickness in an optokinetic drum.
    Bubka A; Bonato F; Urmey S; Mycewicz D
    Aviat Space Environ Med; 2006 Aug; 77(8):811-5. PubMed ID: 16909874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coriolis effects and motion sickness modelling.
    Bles W
    Brain Res Bull; 1998 Nov; 47(5):543-9. PubMed ID: 10052586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion sickness caused by rotations about Earth-horizontal and Earth-vertical axes.
    Leger A; Money KE; Landolt JP; Cheung BS; Rodden BE
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Mar; 50(3):469-77. PubMed ID: 7251437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation of motion sickness to the spatial-temporal properties of velocity storage.
    Dai M; Kunin M; Raphan T; Cohen B
    Exp Brain Res; 2003 Jul; 151(2):173-89. PubMed ID: 12783152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of passenger body movements in a visual task during and after vehicle rotation on post-rotatory illusion and motion sickness.
    Wada T; Sato E; Orita Y; Kida S; Horita H; Rakumatsu T
    Exp Brain Res; 2024 Jun; 242(6):1455-1467. PubMed ID: 38676725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.