These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 38254011)
21. Uncovering driver genes in breast cancer through an innovative machine learning mutational analysis method. Taheri G; Habibi M Comput Biol Med; 2024 Mar; 171():108234. PubMed ID: 38430742 [TBL] [Abstract][Full Text] [Related]
22. Improving cancer driver gene identification using multi-task learning on graph convolutional network. Peng W; Tang Q; Dai W; Chen T Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232 [TBL] [Abstract][Full Text] [Related]
23. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model. Zhao W; Gu X; Chen S; Wu J; Zhou Z Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338 [TBL] [Abstract][Full Text] [Related]
24. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data. Jia P; Zhao Z PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372 [TBL] [Abstract][Full Text] [Related]
25. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
26. PhenoDriver: interpretable framework for studying personalized phenotype-associated driver genes in breast cancer. Li Y; Zhang SW; Xie MY; Zhang T Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37738403 [TBL] [Abstract][Full Text] [Related]
27. A new machine learning method for cancer mutation analysis. Habibi M; Taheri G PLoS Comput Biol; 2022 Oct; 18(10):e1010332. PubMed ID: 36251702 [TBL] [Abstract][Full Text] [Related]
28. Identifying Cancer Specific Driver Modules Using a Network-Based Method. Li F; Gao L; Wang P; Hu Y Molecules; 2018 May; 23(5):. PubMed ID: 29738475 [TBL] [Abstract][Full Text] [Related]
29. OMEN: network-based driver gene identification using mutual exclusivity. Van Daele D; Weytjens B; De Raedt L; Marchal K Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634 [TBL] [Abstract][Full Text] [Related]
30. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. Ülgen E; Sezerman OU BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627 [TBL] [Abstract][Full Text] [Related]
31. Advancing cancer driver gene identification through an integrative network and pathway approach. Song J; Song Z; Gong Y; Ge L; Lou W J Biomed Inform; 2024 Oct; 158():104729. PubMed ID: 39306314 [TBL] [Abstract][Full Text] [Related]
32. DriverMP enables improved identification of cancer driver genes. Liu Y; Han J; Kong T; Xiao N; Mei Q; Liu J Gigascience; 2022 Dec; 12():. PubMed ID: 38091511 [TBL] [Abstract][Full Text] [Related]
33. SSCI: Self-Supervised Deep Learning Improves Network Structure for Cancer Driver Gene Identification. Xu J; Hao J; Liao X; Shang X; Li X Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408682 [TBL] [Abstract][Full Text] [Related]
34. Personalized Driver Gene Prediction Using Graph Convolutional Networks with Conditional Random Fields. Wei PJ; Zhu AD; Cao R; Zheng C Biology (Basel); 2024 Mar; 13(3):. PubMed ID: 38534453 [TBL] [Abstract][Full Text] [Related]
35. Two-stage-vote ensemble framework based on integration of mutation data and gene interaction network for uncovering driver genes. Kan Y; Jiang L; Guo Y; Tang J; Guo F Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791034 [TBL] [Abstract][Full Text] [Related]
36. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes. Sudhakar M; Rengaswamy R; Raman K Front Genet; 2022; 13():854190. PubMed ID: 35620468 [TBL] [Abstract][Full Text] [Related]
37. Advancing cancer driver gene detection via Schur complement graph augmentation and independent subspace feature extraction. Ma X; Li Z; Du Z; Xu Y; Chen Y; Zhuo L; Fu X; Liu R Comput Biol Med; 2024 May; 174():108484. PubMed ID: 38643595 [TBL] [Abstract][Full Text] [Related]
38. A random walk-based method to identify driver genes by integrating the subcellular localization and variation frequency into bipartite graph. Song J; Peng W; Wang F BMC Bioinformatics; 2019 May; 20(1):238. PubMed ID: 31088372 [TBL] [Abstract][Full Text] [Related]
39. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
40. Ranking cancer drivers via betweenness-based outlier detection and random walks. Erten C; Houdjedj A; Kazan H BMC Bioinformatics; 2021 Feb; 22(1):62. PubMed ID: 33568049 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]