These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38254011)

  • 41. MaxCLK: discovery of cancer driver genes via maximal clique and information entropy of modules.
    Liu J; Ma F; Zhu Y; Zhang N; Kong L; Mi J; Cong H; Gao R; Wang M; Zhang Y
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38065693
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 43. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive evaluation of computational methods for predicting cancer driver genes.
    Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data.
    Nguyen QH; Le DH
    Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Machine Learning Classification and Structure-Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes.
    Agajanian S; Odeyemi O; Bischoff N; Ratra S; Verkhivker GM
    J Chem Inf Model; 2018 Oct; 58(10):2131-2150. PubMed ID: 30253099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identifying cancer driver genes using a two-stage random walk with restart on a gene interaction network.
    Meng P; Wang G; Guo H; Jiang T
    Comput Biol Med; 2023 May; 158():106810. PubMed ID: 37011433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.
    Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y
    Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MECoRank: cancer driver genes discovery simultaneously evaluating the impact of SNVs and differential expression on transcriptional networks.
    Hui Y; Wei PJ; Xia J; Wang YT; Zheng CH
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):140. PubMed ID: 31888623
    [TBL] [Abstract][Full Text] [Related]  

  • 50. uKIN Combines New and Prior Information with Guided Network Propagation to Accurately Identify Disease Genes.
    Hristov BH; Chazelle B; Singh M
    Cell Syst; 2020 Jun; 10(6):470-479.e3. PubMed ID: 32684276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients.
    Guo WF; Zhang SW; Feng YH; Liang J; Zeng T; Chen L
    Nucleic Acids Res; 2021 Apr; 49(7):e37. PubMed ID: 33434272
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Network embedding framework for driver gene discovery by combining functional and structural information.
    Chu X; Guan B; Dai L; Liu JX; Li F; Shang J
    BMC Genomics; 2023 Jul; 24(1):426. PubMed ID: 37516822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Integrated Analyses of Driver Genes Identify Key Biomarkers in Thyroid Cancer.
    Xu Q; Song A; Xie Q
    Technol Cancer Res Treat; 2020; 19():1533033820940440. PubMed ID: 32812852
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph.
    Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N
    BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Individualized discovery of rare cancer drivers in global network context.
    Petrov I; Alexeyenko A
    Elife; 2022 May; 11():. PubMed ID: 35593700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel ratio-metric features enable the identification of new driver genes across cancer types.
    Sudhakar M; Rengaswamy R; Raman K
    Sci Rep; 2022 Jan; 12(1):5. PubMed ID: 34997044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.