These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Effects of the substitution of wheat flour with raw or germinated ayocote bean (Phaseolus coccineus) flour on the nutritional properties and quality of bread. Espinosa-Ramírez J; Mariscal-Moreno RM; Chuck-Hernández C; Serna-Saldivar SO; Espiricueta-Candelaria RS J Food Sci; 2022 Sep; 87(9):3766-3780. PubMed ID: 35904200 [TBL] [Abstract][Full Text] [Related]
43. Near-Infrared Spectroscopy and Aquaphotomics for Monitoring Mung Bean ( Tjandra Nugraha D; Zinia Zaukuu JL; Aguinaga Bósquez JP; Bodor Z; Vitalis F; Kovacs Z Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477304 [TBL] [Abstract][Full Text] [Related]
44. Towards the non-invasive assessment of staling in bovine hides with hyperspectral imaging. Liu Y; Dixit Y; Reis MM; Prabakar S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122220. PubMed ID: 36516590 [TBL] [Abstract][Full Text] [Related]
45. Vis-NIR hyperspectral imaging coupled with independent component analysis for saffron authentication. Hashemi-Nasab FS; Parastar H Food Chem; 2022 Nov; 393():133450. PubMed ID: 35751218 [TBL] [Abstract][Full Text] [Related]
46. Determination of pectin content in orange peels by near infrared hyperspectral imaging. Badaró AT; Garcia-Martin JF; López-Barrera MDC; Barbin DF; Alvarez-Mateos P Food Chem; 2020 Apr; 323():126861. PubMed ID: 32334320 [TBL] [Abstract][Full Text] [Related]
47. Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Caporaso N; Whitworth MB; Fowler MS; Fisk ID Food Chem; 2018 Aug; 258():343-351. PubMed ID: 29655743 [TBL] [Abstract][Full Text] [Related]
48. Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging. Huang H; Hu X; Tian J; Jiang X; Sun T; Luo H; Huang D Food Chem; 2021 Oct; 359():129954. PubMed ID: 33964659 [TBL] [Abstract][Full Text] [Related]
49. An innovative variant based on generative adversarial network (GAN): Regression GAN combined with hyperspectral imaging to predict pesticide residue content of Hami melon. Tan H; Ma B; Xu Y; Dang F; Yu G; Bian H Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 325():125086. PubMed ID: 39288601 [TBL] [Abstract][Full Text] [Related]
50. Near-Infrared Hyperspectral Imaging as a Monitoring Tool for On-Demand Manufacturing of Inkjet-Printed Formulations. Stranzinger S; Wolfgang M; Klotz E; Scheibelhofer O; Ghiotti P; Khinast JG; Hsiao WK; Paudel A AAPS PharmSciTech; 2021 Aug; 22(6):211. PubMed ID: 34374899 [TBL] [Abstract][Full Text] [Related]
51. Non-destructive evaluation of bacteria-infected watermelon seeds using visible/near-infrared hyperspectral imaging. Lee H; Kim MS; Song YR; Oh CS; Lim HS; Lee WH; Kang JS; Cho BK J Sci Food Agric; 2017 Mar; 97(4):1084-1092. PubMed ID: 27264863 [TBL] [Abstract][Full Text] [Related]
52. Quantification and classification of deoxynivalenol-contaminated oat samples by near-infrared hyperspectral imaging. Teixido-Orries I; Molino F; Femenias A; Ramos AJ; Marín S Food Chem; 2023 Aug; 417():135924. PubMed ID: 36934710 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of near-infrared hyperspectral imaging for the assessment of potato processing aptitude. López-Maestresalas A; Lopez-Molina C; Oliva-Lobo GA; Jarén C; Ruiz de Galarreta JI; Peraza-Alemán CM; Arazuri S Front Nutr; 2022; 9():999877. PubMed ID: 36324619 [TBL] [Abstract][Full Text] [Related]
54. [Fusion of spectrum and image features to identify Glycyrrhizae Radix et Rhizoma from different origins based on hyperspectral imaging technology]. Yin WJ; Ru CL; Zheng J; Zhang L; Yan JZ; Zhang H Zhongguo Zhong Yao Za Zhi; 2021 Feb; 46(4):923-930. PubMed ID: 33645098 [TBL] [Abstract][Full Text] [Related]
55. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Jiang H; Yuan W; Ru Y; Chen Q; Wang J; Zhou H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121689. PubMed ID: 35914356 [TBL] [Abstract][Full Text] [Related]
56. Total lipid prediction in single intact cocoa beans by hyperspectral chemical imaging. Caporaso N; Whitworth MB; Fisk ID Food Chem; 2021 May; 344():128663. PubMed ID: 33277124 [TBL] [Abstract][Full Text] [Related]
57. Effect of Moisture Content Difference on the Analysis of Quality Attributes of Red Pepper ( Choi JY; Cho JS; Park KJ; Choi JH; Lim JH Foods; 2022 Dec; 11(24):. PubMed ID: 36553829 [TBL] [Abstract][Full Text] [Related]
58. Quality evaluation of decoction pieces of Rhizoma Atractylodis Macrocephalae by near infrared spectroscopy coupled with chemometrics. Chen X; Sun X; Hua H; Yi Y; Li H; Chen C Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117169. PubMed ID: 31174137 [TBL] [Abstract][Full Text] [Related]
59. Nondestructive classification of soft rot disease in napa cabbage using hyperspectral imaging analysis. Song H; Yoon SR; Dang YM; Yang JS; Hwang IM; Ha JH Sci Rep; 2022 Aug; 12(1):14707. PubMed ID: 36038711 [TBL] [Abstract][Full Text] [Related]
60. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Hu L; Yin C; Ma S; Liu Z Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():574-581. PubMed ID: 30075438 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]