BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38254594)

  • 1. Printability of Nixtamalized Corn Dough during Screw-Based Three-Dimensional Food Printing.
    Rodríguez-Herrera VV; Umeda T; Kozu H; Sasaki T; Kobayashi I
    Foods; 2024 Jan; 13(2):. PubMed ID: 38254594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material requirements for printing cookie dough using a fused deposition modeling 3D printer.
    In J; Jeong H; Min SC
    Food Sci Biotechnol; 2022 Jul; 31(7):807-817. PubMed ID: 35720457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of 3D Food Printing Processing on Polyphenol System of Loaded
    Zhou Q; Nan X; Zhang S; Zhang L; Chen J; Li J; Wang H; Ruan Z
    Foods; 2023 May; 12(10):. PubMed ID: 37238886
    [No Abstract]   [Full Text] [Related]  

  • 4. Advances in 3D printing of food and nutritional products.
    Diañez I; Martínez I; Franco JM; Brito-de la Fuente E; Gallegos C
    Adv Food Nutr Res; 2022; 100():173-210. PubMed ID: 35659352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies.
    Varghese C; Wolodko J; Chen L; Doschak M; Srivastav PP; Roopesh MS
    Foods; 2020 Jul; 9(7):. PubMed ID: 32664254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printability and Thermophysical Properties of Three-Dimensional-Printed Food Based on "Cochayuyo"
    Lemus-Mondaca R; Puente-Díaz L; Vásquez-Montaño A; León E; Zura-Bravo L; Ortiz-Viedma J
    Foods; 2024 Jun; 13(12):. PubMed ID: 38928767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viability Study on the Use of Three Different Gels for 3D Food Printing.
    Matas A; Molina-Montero C; Igual M; García-Segovia P; Martínez-Monzó J
    Gels; 2023 Sep; 9(9):. PubMed ID: 37754417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing.
    Sager VF; Munk MB; Hansen MS; Bredie WLP; Ahrné L
    Foods; 2020 Dec; 10(1):. PubMed ID: 33375171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS.
    Oladeji S; Mohylyuk V; Jones DS; Andrews GP
    Int J Pharm; 2022 Mar; 616():121553. PubMed ID: 35131354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach.
    Gao T; Gillispie GJ; Copus JS; Pr AK; Seol YJ; Atala A; Yoo JJ; Lee SJ
    Biofabrication; 2018 Jun; 10(3):034106. PubMed ID: 29923501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the rheological properties and 3D printability of tomato-starch paste with different levels of xanthan gum.
    Zhao Y; Li Y; Liu Q; Chen Q; Sun F; Kong B
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128430. PubMed ID: 38043652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of rice flour and pastes with different sweeteners for extrusion-based 3D food printing.
    Prithviraj V; Thangalakshmi S; Arora VK; Liu Z
    J Texture Stud; 2022 Oct; 53(6):895-907. PubMed ID: 35736231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Flour and Fat Type on Dough Rheology and Technological Characteristics of 3D-Printed Cookies.
    Vukušić Pavičić T; Grgić T; Ivanov M; Novotni D; Herceg Z
    Foods; 2021 Jan; 10(1):. PubMed ID: 33477857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between rheological and textural properties of shrimp surimi adding starch and 3D printability based on principal component analysis.
    Pan Y; Sun Q; Liu Y; Wei S; Xia Q; Zheng O; Liu S; Ji H; Deng C; Hao J
    Food Sci Nutr; 2021 Jun; 9(6):2985-2999. PubMed ID: 34136165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printability in extrusion bioprinting.
    Fu Z; Naghieh S; Xu C; Wang C; Sun W; Chen X
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33601340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the 3D printability of pearl millet flour with banana pulp blends.
    Santhoshkumar P; Raja V; Priyadarshini SR; Moses JA
    J Sci Food Agric; 2024 Jul; 104(9):5588-5602. PubMed ID: 38363095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing.
    Zeng X; Chen H; Chen L; Zheng B
    Food Chem; 2021 Apr; 342():128362. PubMed ID: 33077283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties.
    Agarwal PS; Poddar S; Varshney N; Sahi AK; Vajanthri KY; Yadav K; Parmar AS; Mahto SK
    J Biomater Appl; 2021 Apr; 35(9):1132-1142. PubMed ID: 33377809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of protein-polysaccharide hybrid gelator system on the material properties and 3D extrusion printability of mashed potatoes.
    Li Y; Cheng Z; Zhang J; Xu S; Cai Y; Ding Y; Lyu F
    J Food Sci; 2024 Apr; 89(4):2347-2358. PubMed ID: 38488735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.