BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38254904)

  • 1. Segmentation of 71 Anatomical Structures Necessary for the Evaluation of Guideline-Conforming Clinical Target Volumes in Head and Neck Cancers.
    Walter A; Hoegen-Saßmannshausen P; Stanic G; Rodrigues JP; Adeberg S; Jäkel O; Frank M; Giske K
    Cancers (Basel); 2024 Jan; 16(2):. PubMed ID: 38254904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.
    Shi J; Ding X; Liu X; Li Y; Liang W; Wu J
    Med Phys; 2021 Jul; 48(7):3968-3981. PubMed ID: 33905545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy.
    Jin D; Guo D; Ho TY; Harrison AP; Xiao J; Tseng CK; Lu L
    Med Image Anal; 2021 Feb; 68():101909. PubMed ID: 33341494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network.
    Guo Z; Guo N; Gong K; Zhong S; Li Q
    Phys Med Biol; 2019 Oct; 64(20):205015. PubMed ID: 31514173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans.
    Siciarz P; McCurdy B
    Phys Med Biol; 2022 Jun; 67(11):. PubMed ID: 35134792
    [No Abstract]   [Full Text] [Related]  

  • 7. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment.
    Chen Y; Vinogradskiy Y; Yu Y; Shi W; Liu H
    Front Oncol; 2022; 12():842579. PubMed ID: 35359361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.
    Daisne JF; Blumhofer A
    Radiat Oncol; 2013 Jun; 8():154. PubMed ID: 23803232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment.
    Kihara S; Koike Y; Takegawa H; Anetai Y; Nakamura S; Tanigawa N; Koizumi M
    Med Dosim; 2023 Spring; 48(1):20-24. PubMed ID: 36273950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delineation of clinical target volume and organs at risk in cervical cancer radiotherapy by deep learning networks.
    Tian M; Wang H; Liu X; Ye Y; Ouyang G; Shen Y; Li Z; Wang X; Wu S
    Med Phys; 2023 Oct; 50(10):6354-6365. PubMed ID: 37246619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-observer variability of clinical target volume delineation in definitive radiotherapy of neck lymph node metastases from unknown primary. A cooperative study of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) Head and Neck Group.
    Trignani M; Argenone A; Di Biase S; Musio D; Merlotti A; Ursino S; Orlandi E; Genovesi D; Bacigalupo A
    Radiol Med; 2019 Jul; 124(7):682-692. PubMed ID: 30852793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function.
    Cardenas CE; McCarroll RE; Court LE; Elgohari BA; Elhalawani H; Fuller CD; Kamal MJ; Meheissen MAM; Mohamed ASR; Rao A; Williams B; Wong A; Yang J; Aristophanous M
    Int J Radiat Oncol Biol Phys; 2018 Jun; 101(2):468-478. PubMed ID: 29559291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.
    Choi MS; Choi BS; Chung SY; Kim N; Chun J; Kim YB; Chang JS; Kim JS
    Radiother Oncol; 2020 Dec; 153():139-145. PubMed ID: 32991916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.