BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38254904)

  • 21. A deep learning approach for automatic delineation of clinical target volume in stereotactic partial breast irradiation (S-PBI).
    Kazemimoghadam M; Yang Z; Chen M; Rahimi A; Kim N; Alluri P; Nwachukwu C; Lu W; Gu X
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 37084739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic end-to-end VMAT treatment planning for rectal cancers.
    Huang K; Chung C; Ludmir EB; Zhang L; Owens CA; Vega JG; Duryea J; Zhao Y; Chen X; Fuentes D; Cardenas CE; Briere TM; Beddar S; Court LE; Das P
    J Appl Clin Med Phys; 2024 Apr; 25(4):e14259. PubMed ID: 38317597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-configuring nnU-Net for automatic delineation of the organs at risk and target in high-dose rate cervical brachytherapy, a low/middle-income country's experience.
    Duprez D; Trauernicht C; Simonds H; Williams O
    J Appl Clin Med Phys; 2023 Aug; 24(8):e13988. PubMed ID: 37042449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours.
    Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G
    Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RefineNet-based automatic delineation of the clinical target volume and organs at risk for three-dimensional brachytherapy for cervical cancer.
    Jiang X; Wang F; Chen Y; Yan S
    Ann Transl Med; 2021 Dec; 9(23):1721. PubMed ID: 35071415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of deep learning networks for fully automated head and neck tumor delineation on multi-centric PET/CT images.
    Wang Y; Lombardo E; Huang L; Avanzo M; Fanetti G; Franchin G; Zschaeck S; Weingärtner J; Belka C; Riboldi M; Kurz C; Landry G
    Radiat Oncol; 2024 Jan; 19(1):3. PubMed ID: 38191431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network.
    Sadeghi S; Farzin M; Gholami S
    Pol J Radiol; 2023; 88():e31-e40. PubMed ID: 36819221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An open-source nnU-net algorithm for automatic segmentation of MRI scans in the male pelvis for adaptive radiotherapy.
    Lorenzen EL; Celik B; Sarup N; Dysager L; Christiansen RL; Bertelsen AS; Bernchou U; Agergaard SN; Konrad ML; Brink C; Mahmood F; Schytte T; Nyborg CJ
    Front Oncol; 2023; 13():1285725. PubMed ID: 38023233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images.
    Ding Y; Chen Z; Wang Z; Wang X; Hu D; Ma P; Ma C; Wei W; Li X; Xue X; Wang X
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13566. PubMed ID: 35192243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy.
    Yang J; Beadle BM; Garden AS; Gunn B; Rosenthal D; Ang K; Frank S; Williamson R; Balter P; Court L; Dong L
    Pract Radiat Oncol; 2014; 4(1):e31-7. PubMed ID: 24621429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer.
    Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y
    Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457
    [No Abstract]   [Full Text] [Related]  

  • 35. Auto-delineation of oropharyngeal clinical target volumes using 3D convolutional neural networks.
    Cardenas CE; Anderson BM; Aristophanous M; Yang J; Rhee DJ; McCarroll RE; Mohamed ASR; Kamal M; Elgohari BA; Elhalawani HM; Fuller CD; Rao A; Garden AS; Court LE
    Phys Med Biol; 2018 Nov; 63(21):215026. PubMed ID: 30403188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consequences of introducing geometric GTV to CTV margin expansion in DAHANCA contouring guidelines for head and neck radiotherapy.
    Hansen CR; Johansen J; Samsøe E; Andersen E; Petersen JBB; Jensen K; Andersen LJ; Sand HMB; Bertelsen AS; Grau C
    Radiother Oncol; 2018 Jan; 126(1):43-47. PubMed ID: 28987748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
    Weissmann T; Huang Y; Fischer S; Roesch J; Mansoorian S; Ayala Gaona H; Gostian AO; Hecht M; Lettmaier S; Deloch L; Frey B; Gaipl US; Distel LV; Maier A; Iro H; Semrau S; Bert C; Fietkau R; Putz F
    Front Oncol; 2023; 13():1115258. PubMed ID: 36874135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive Quantitative Evaluation of Variability in Magnetic Resonance-Guided Delineation of Oropharyngeal Gross Tumor Volumes and High-Risk Clinical Target Volumes: An R-IDEAL Stage 0 Prospective Study.
    Cardenas CE; Blinde SE; Mohamed ASR; Ng SP; Raaijmakers C; Philippens M; Kotte A; Al-Mamgani AA; Karam I; Thomson DJ; Robbins J; Newbold K; Fuller CD; Terhaard C
    Int J Radiat Oncol Biol Phys; 2022 Jun; 113(2):426-436. PubMed ID: 35124134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning-based segmentation in prostate radiation therapy using Monte Carlo simulated cone-beam computed tomography.
    Abbani N; Baudier T; Rit S; Franco FD; Okoli F; Jaouen V; Tilquin F; Barateau A; Simon A; de Crevoisier R; Bert J; Sarrut D
    Med Phys; 2022 Nov; 49(11):6930-6944. PubMed ID: 36000762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.