BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 38254952)

  • 1. Mechanisms of Rapid Karyotype Evolution in Mammals.
    Brannan EO; Hartley GA; O'Neill RJ
    Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages.
    Bulazel KV; Ferreri GC; Eldridge MD; O'Neill RJ
    Genome Biol; 2007; 8(8):R170. PubMed ID: 17708770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subchromosomal karyotype evolution in Equidae.
    Musilova P; Kubickova S; Vahala J; Rubes J
    Chromosome Res; 2013 Apr; 21(2):175-87. PubMed ID: 23532666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A centromere satellite concomitant with extensive karyotypic diversity across the Peromyscus genus defies predictions of molecular drive.
    Smalec BM; Heider TN; Flynn BL; O'Neill RJ
    Chromosome Res; 2019 Sep; 27(3):237-252. PubMed ID: 30771198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal polymorphism in mammals: an evolutionary perspective.
    Dobigny G; Britton-Davidian J; Robinson TJ
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):1-21. PubMed ID: 26234165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Genome Analysis Reveals the Dynamic Evolution of Holocentric Chromosomes in Satyrine Butterflies.
    Pazhenkova EA; Lukhtanov VA
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centromere Repeats: Hidden Gems of the Genome.
    Hartley G; O'Neill RJ
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30884847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repositioning of centromere-associated repeats during karyotype evolution in Oryzias fishes.
    Ansai S; Toyoda A; Yoshida K; Kitano J
    Mol Ecol; 2023 Nov; ():. PubMed ID: 38014620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Karyotype evolution in monitor lizards: cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade.
    Srikulnath K; Uno Y; Nishida C; Matsuda Y
    Chromosome Res; 2013 Dec; 21(8):805-19. PubMed ID: 24343421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of centromere function drives karyotype evolution in closely related
    Sankaranarayanan SR; Ianiri G; Coelho MA; Reza MH; Thimmappa BC; Ganguly P; Vadnala RN; Sun S; Siddharthan R; Tellgren-Roth C; Dawson TL; Heitman J; Sanyal K
    Elife; 2020 Jan; 9():. PubMed ID: 31958060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Karyotype evolution of eulipotyphla (insectivora): the genome homology of seven sorex species revealed by comparative chromosome painting and banding data.
    Biltueva L; Vorobieva N; Perelman P; Trifonov V; Volobouev V; Panov V; Ilyashenko V; Onischenko S; O'Brien P; Yang F; Ferguson-Smith M; Graphodatsky A
    Cytogenet Genome Res; 2011; 135(1):51-64. PubMed ID: 21912114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae.
    Montenegro C; do Vale Martins L; Bustamante FO; Brasileiro-Vidal AC; Pedrosa-Harand A
    Chromosome Res; 2022 Dec; 30(4):477-492. PubMed ID: 35715657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of latent centromeres in the Mammalian genome.
    Ferreri GC; Liscinsky DM; Mack JA; Eldridge MD; O'Neill RJ
    J Hered; 2005; 96(3):217-24. PubMed ID: 15653556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Sciuromorph rodent karyotypes in evolution.
    Romanenko SA; Volobouev V
    Cytogenet Genome Res; 2012; 137(2-4):233-45. PubMed ID: 22699115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals.
    Álvarez-González L; Arias-Sardá C; Montes-Espuña L; Marín-Gual L; Vara C; Lister NC; Cuartero Y; Garcia F; Deakin J; Renfree MB; Robinson TJ; Martí-Renom MA; Waters PD; Farré M; Ruiz-Herrera A
    Cell Rep; 2022 Dec; 41(12):111839. PubMed ID: 36543130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed molecular cytogenetic characterisation of the myeloid cell line U937 reveals the fate of homologous chromosomes and shows that centromere capture is a feature of genome instability.
    MacKinnon RN; Peverall J; Campbell LJ; Wall M
    Mol Cytogenet; 2020 Dec; 13(1):50. PubMed ID: 33317567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis.
    Zhao Q; Meng Y; Wang P; Qin X; Cheng C; Zhou J; Yu X; Li J; Lou Q; Jahn M; Chen J
    Plant J; 2021 Aug; 107(4):1243-1259. PubMed ID: 34160852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution.
    Jankowska M; Fuchs J; Klocke E; Fojtová M; Polanská P; Fajkus J; Schubert V; Houben A
    Chromosoma; 2015 Dec; 124(4):519-28. PubMed ID: 26062516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High rates of structural rearrangements have shaped the chromosome evolution in dysploid Phaseolus beans.
    Nascimento T; Pedrosa-Harand A
    Theor Appl Genet; 2023 Sep; 136(10):215. PubMed ID: 37751069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis.
    Huang L; Wang J; Nie W; Su W; Yang F
    Chromosome Res; 2006; 14(6):637-47. PubMed ID: 16964570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.