These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38255458)

  • 1. Comparative Fatigue Performance of Decarburized Surfaces in Railway Rails.
    Muttamara A; Sommanat J; Kanchanomai C; Viyanit E
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Crack Propagation of 51CrV4 Steels for Leaf Spring Suspensions of Railway Freight Wagons.
    Gomes VMG; Lesiuk G; Correia JAFO; de Jesus AMP
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined Acoustic Emission and Digital Image Correlation for Early Detection and Measurement of Fatigue Cracks in Rails and Train Parts under Dynamic Loading.
    Machikhin A; Poroykov A; Bardakov V; Marchenkov A; Zhgut D; Sharikova M; Barat V; Meleshko N; Kren A
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Tribo-Fatigue Damage Transition and Mapping for Wheel Material under Rolling-Sliding Contact Condition.
    He C; Liu J; Wang W; Liu Q
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the Fatigue Crack Propagation of Medium-Entropy Alloys with Heterogeneous Microstructures.
    Liu Y; Jiang P; Duan G; Wang J; Zhou L; Xie J
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode I Crack Propagation Experimental Analysis of Adhesive Bonded Joints Comprising Glass Fibre Composite Material under Impact and Constant Amplitude Fatigue Loading.
    Bautista Villamil AA; Casas-Rodriguez JP; Porras Holguin A; Silva Barrera M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of closed cracks in railway using eddy current pulsed thermography.
    Yin H; Peng J; Zhang X; Tian K; Zhang Y; Guo J
    Appl Opt; 2021 Jun; 60(17):5195-5202. PubMed ID: 34143088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip.
    Neto DM; Borges MF; Sérgio ER; Antunes FV
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors.
    Kuang Y; Wang Y; Xiang P; Tao L; Wang K; Fan F; Yang J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Crack Obstruction Mechanisms in Crofer
    Fischer T; Kuhn B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue damage assessment of complex railway turnout crossings via Peridynamics-based digital twin.
    Hamarat M; Papaelias M; Kaewunruen S
    Sci Rep; 2022 Aug; 12(1):14377. PubMed ID: 35999353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Behavior of Heavy-Haul Railway Prestressed Concrete Beams Based on Vehicle-Bridge Coupling Vibration.
    Song L; Liu R; Cui C; Yu Z; Zhang W
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Ultrasonic Assisted Surface Rolling Process on the Fatigue Crack Initiation Position Distribution and Fatigue Life of 51CrV4 Spring Steel.
    Xu C; Liang Y; Yang M; Yu J; Peng X
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic Deformation Induced Residual Stress Evolution and 3D Short Fatigue Crack Growth Investigated by Advanced Synchrotron Tomography Techniques.
    Dönges B; Syha M; Hüsecken AK; Pietsch U; Ludwig W; Krupp U; Christ HJ
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions.
    Wendler M; Belli R; Valladares D; Petschelt A; Lohbauer U
    Dent Mater; 2018 Jun; 34(6):910-921. PubMed ID: 29678328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the characteristics of magneto acoustic emission for mild steel fatigue.
    Shen G; Shen Y
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190586. PubMed ID: 32921241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.