These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38255830)
1. Svx Peptidases of Phytopathogenic Pectolytic Bacteria: Structural, Catalytic and Phytoimmune Properties. Tendiuk N; Diakonova A; Petrova O; Mukhametzyanov T; Makshakova O; Gorshkov V Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255830 [TBL] [Abstract][Full Text] [Related]
2. Structure-Functional Characteristics of the Svx Protein-The Virulence Factor of the Phytopathogenic Bacterium Tendiuk N; Konnova T; Petrova O; Osipova E; Mukhametzyanov T; Makshakova O; Gorshkov V Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805920 [TBL] [Abstract][Full Text] [Related]
3. The Role of Islamov B; Petrova O; Mikshina P; Kadyirov A; Vorob'ev V; Gogolev Y; Gorshkov V Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884586 [TBL] [Abstract][Full Text] [Related]
4. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Naushad HS; Lee B; Gupta RS Int J Syst Evol Microbiol; 2014 Feb; 64(Pt 2):366-383. PubMed ID: 24505075 [TBL] [Abstract][Full Text] [Related]
5. Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Effantin G; Rivasseau C; Gromova M; Bligny R; Hugouvieux-Cotte-Pattat N Mol Microbiol; 2011 Nov; 82(4):988-97. PubMed ID: 22032684 [TBL] [Abstract][Full Text] [Related]
6. Development of PCR-Based Detection System for Soft Rot Pectobacteriaceae Pathogens Using Molecular Signatures. Kabir MN; Taheri A; Dumenyo CK Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32131497 [No Abstract] [Full Text] [Related]
7. Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. Pédron J; Mondy S; des Essarts YR; Van Gijsegem F; Faure D BMC Genomics; 2014 Apr; 15():283. PubMed ID: 24735398 [TBL] [Abstract][Full Text] [Related]
8. Pathogenicity and Relative Abundance of de Werra P; Debonneville C; Kellenberger I; Dupuis B Microorganisms; 2021 Oct; 9(11):. PubMed ID: 34835395 [No Abstract] [Full Text] [Related]
9. May the Phage be With You? Prophage-Like Elements in the Genomes of Soft Rot Czajkowski R Front Microbiol; 2019; 10():138. PubMed ID: 30828320 [TBL] [Abstract][Full Text] [Related]
10. Species of Curland RD; Mainello A; Perry KL; Hao J; Charkowski AO; Bull CT; McNally RR; Johnson SB; Rosenzweig N; Secor GA; Larkin RP; Gugino BK; Ishimaru CA Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442812 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Bellieny-Rabelo D; Tanui CK; Miguel N; Kwenda S; Shyntum DY; Moleleki LN Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413477 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial activity and mode of action of potassium tetraborate tetrahydrate against soft-rot bacterial plant pathogens. Liu Y; Filiatrault MJ Microbiology (Reading); 2020 Sep; 166(9):837-848. PubMed ID: 32639227 [TBL] [Abstract][Full Text] [Related]
13. The structure of an abequose - containing O-polysaccharide isolated from Pectobacterium aquaticum IFB5637. Kowalczyk A; Szpakowska N; Babinska W; Motyka-Pomagruk A; Sledz W; Lojkowska E; Kaczyński Z Carbohydr Res; 2022 Dec; 522():108696. PubMed ID: 36335652 [TBL] [Abstract][Full Text] [Related]
14. Genomic and Functional Dissections of Dickeya zeae Shed Light on the Role of Type III Secretion System and Cell Wall-Degrading Enzymes to Host Range and Virulence. Hu M; Xue Y; Li C; Lv M; Zhang L; Parsek MR; Lu G; Zhou X; Zhou J Microbiol Spectr; 2022 Feb; 10(1):e0159021. PubMed ID: 35107329 [TBL] [Abstract][Full Text] [Related]
15. A Switch from Latent to Typical Infection during Tsers I; Parfirova O; Moruzhenkova V; Petrova O; Gogoleva N; Vorob'ev V; Gogolev Y; Gorshkov V Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686094 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of Pectobacterium and Dickeya spp. phytopathogens using infrared spectroscopy and machine learning analysis. Abu-Aqil G; Tsror L; Shufan E; Adawi S; Mordechai S; Huleihel M; Salman A J Biophotonics; 2020 May; 13(5):e201960156. PubMed ID: 32030907 [TBL] [Abstract][Full Text] [Related]
18. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Przepiora T; Figaj D; Bogucka A; Fikowicz-Krosko J; Czajkowski R; Hugouvieux-Cotte-Pattat N; Skorko-Glonek J Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054882 [TBL] [Abstract][Full Text] [Related]
19. Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Gorshkov V; Parfirova O Semin Cell Dev Biol; 2023; 148-149():33-41. PubMed ID: 36621443 [TBL] [Abstract][Full Text] [Related]
20. Early Emergence of Pédron J; Schaerer S; Kellenberger I; Van Gijsegem F Microorganisms; 2021 May; 9(6):. PubMed ID: 34072830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]