BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38255929)

  • 1. Floral Volatile Organic Compounds Change the Composition and Function of the Endophytic Fungal Community in the Flowers of
    Shi T; Shi M; Ye Y; Yue Y; Wang L; Yang X
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral volatiles identification and molecular differentiation of Osmanthus fragrans by neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry.
    Zhang X; Liu J; Wang Y; Chingin K; Hua R; Zhu L; Rahman MM; Frankevich V; Chen H
    Rapid Commun Mass Spectrom; 2019 Dec; 33(24):1861-1869. PubMed ID: 31414500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Cytochrome P450 Monooxygenase Superfamily in
    Liu J; Hu H; Shen H; Tian Q; Ding W; Yang X; Wang L; Yue Y
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293004
    [No Abstract]   [Full Text] [Related]  

  • 4. The Relationship between Endophytic Fungi of
    Li Y; Hei J; He X; Rui R; Wang S
    J Fungi (Basel); 2024 Feb; 10(2):. PubMed ID: 38392817
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS.
    Cai X; Mai RZ; Zou JJ; Zhang HY; Zeng XL; Zheng RR; Wang CY
    J Zhejiang Univ Sci B; 2014 Jul; 15(7):638-48. PubMed ID: 25001223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Emission of the Floral Scent of Four Osmanthus fragrans Cultivars in Response to Different Temperatures.
    Fu J; Hou D; Zhang C; Bao Z; Zhao H; Hu S
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28282901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour.
    Baldermann S; Kato M; Kurosawa M; Kurobayashi Y; Fujita A; Fleischmann P; Watanabe N
    J Exp Bot; 2010 Jun; 61(11):2967-77. PubMed ID: 20478967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development.
    Li Y; Ma H; Wan Y; Li T; Liu X; Sun Z; Li Z
    Molecules; 2016 Apr; 21(4):531. PubMed ID: 27110758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of YABBY transcription factors in Osmanthus fragrans and functional analysis of OfYABBY12 in floral scent formation and leaf morphology.
    Shi T; Zhou L; Ye Y; Yang X; Wang L; Yue Y
    BMC Plant Biol; 2024 Jun; 24(1):589. PubMed ID: 38902627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Identification, Classification, and Expression Profiling Reveals R2R3-MYB Transcription Factors Related to Monoterpenoid Biosynthesis in
    Li HY; Yue YZ; Ding WJ; Chen GW; Li L; Li YL; Shi TT; Yang XL; Wang LG
    Genes (Basel); 2020 Mar; 11(4):. PubMed ID: 32224874
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from Osmanthus flowers.
    Deng C; Song G; Hu Y
    Ann Chim; 2004 Dec; 94(12):921-7. PubMed ID: 15689028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds.
    Dhandapani S; Jin J; Sridhar V; Sarojam R; Chua NH; Jang IC
    BMC Genomics; 2017 Jun; 18(1):463. PubMed ID: 28615048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin Discrimination of Osmanthus fragrans var. thunbergii Flowers using GC-MS and UPLC-PDA Combined with Multivariable Analysis Methods.
    Zhou F; Zhao Y; Peng J; Jiang Y; Li M; Jiang Y; Lu B
    Phytochem Anal; 2017 Jul; 28(4):305-315. PubMed ID: 28233350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans.
    Fu J; Zhang C; Liu Y; Pang T; Dong B; Gao X; Zhu Y; Zhao H
    BMC Plant Biol; 2020 Jul; 20(1):337. PubMed ID: 32677959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from
    Cai M; Xu W; Xu Y; Pan H; Zhang Q
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677543
    [No Abstract]   [Full Text] [Related]  

  • 16. SWATH-MS based quantitive proteomics reveal regulatory metabolism and networks of androdioecy breeding system in Osmanthus fragrans.
    Duan YF; Zhang C; Zhang M; Ye Y; Zhang KL; Chen MX; Chen L; Wang XR; Zhu FY
    BMC Plant Biol; 2021 Oct; 21(1):468. PubMed ID: 34645403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of α- and β-ionone, prominent scent compounds, in flowers of Osmanthus fragrans.
    Baldermann S; Kato M; Fleischmann P; Watanabe N
    Acta Biochim Pol; 2012; 59(1):79-81. PubMed ID: 22428136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Evaluation of Key Aroma-Active Compounds in Sweet Osmanthus (
    Sheng X; Lin Y; Cao J; Ning Y; Pang X; Wu J; Kong F
    J Agric Food Chem; 2021 Jan; 69(1):332-344. PubMed ID: 33370113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floral Scent Chemistry of Luculia yunnanensis (Rubiaceae), a Species Endemic to China with Sweetly Fragrant Flowers.
    Li Y; Wan Y; Sun Z; Li T; Liu X; Ma H; Liu X; He R; Ma Y; Li Z
    Molecules; 2017 May; 22(6):. PubMed ID: 28587077
    [No Abstract]   [Full Text] [Related]  

  • 20. Variation in the Floral Scent Chemistry of
    Zhou Q; Zhao F; Shi M; Zhang H; Zhu Z
    Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611469
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.