These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38257036)

  • 21. Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis.
    Lee JK; Anderson G; Tricker AW; Babbe F; Madan A; Cullen DA; Arregui-Mena JD; Danilovic N; Mukundan R; Weber AZ; Peng X
    Nat Commun; 2023 Jul; 14(1):4592. PubMed ID: 37524721
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers.
    Jeon SS; Lee W; Jeon H; Lee H
    ChemSusChem; 2024 Jul; ():e202301827. PubMed ID: 38985026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction.
    Wang C; Yang F; Feng L
    Nanoscale Horiz; 2023 Aug; 8(9):1174-1193. PubMed ID: 37434582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anode Catalysts in Anion-Exchange-Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation.
    Krivina RA; Lindquist GA; Beaudoin SR; Stovall TN; Thompson WL; Twight LP; Marsh D; Grzyb J; Fabrizio K; Hutchison JE; Boettcher SW
    Adv Mater; 2022 Sep; 34(35):e2203033. PubMed ID: 35790033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-Loading and Highly Stable Membrane Electrode Based on an Ir@WO
    Jiang G; Yu H; Li Y; Yao D; Chi J; Sun S; Shao Z
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15073-15082. PubMed ID: 33761742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of the network structure and voltage loss of anode electrode with the polymeric dispersion in PEM water electrolyzer.
    Zhai M; Meng Z; Chen R; Song J; Zhang A; Zhao S; Tian T; Zhu L; Zhang H; Tang H
    J Colloid Interface Sci; 2024 Jun; 673():934-942. PubMed ID: 38909492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer with Elastin-like Polypeptide.
    Pramounmat N; Loney CN; Kim C; Wiles L; Ayers KE; Kusoglu A; Renner JN
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43649-43658. PubMed ID: 31644259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured Ir-supported on Ti4O7 as a cost-effective anode for proton exchange membrane (PEM) electrolyzers.
    Wang L; Lettenmeier P; Golla-Schindler U; Gazdzicki P; CaƱas NA; Morawietz T; Hiesgen R; Hosseiny SS; Gago AS; Friedrich KA
    Phys Chem Chem Phys; 2016 Feb; 18(6):4487-95. PubMed ID: 26791108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Electrode Study of Electrochemical Ionomer Degradation Relevant to Anion-Exchange-Membrane Water Electrolyzers.
    Krivina RA; Lindquist GA; Yang MC; Cook AK; Hendon CH; Motz AR; Capuano C; Ayers KE; Hutchison JE; Boettcher SW
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18261-18274. PubMed ID: 35435656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review.
    Luo Z; Wang J; Zhou W; Li J
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis.
    Chong L; Gao G; Wen J; Li H; Xu H; Green Z; Sugar JD; Kropf AJ; Xu W; Lin XM; Xu H; Wang LW; Liu DJ
    Science; 2023 May; 380(6645):609-616. PubMed ID: 37167381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Similarities and Differences between Gas Diffusion Layers Used in Proton Exchange Membrane Fuel Cell and Water Electrolysis for Material and Mass Transport.
    Zhang T; Meng L; Chen C; Du L; Wang N; Xing L; Tang C; Hu J; Ye S
    Adv Sci (Weinh); 2024 Jun; ():e2309440. PubMed ID: 38889307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the Microstructure and Rheology of Iridium Oxide Catalyst Inks for Low-Temperature Polymer Electrolyte Membrane Water Electrolyzers.
    Khandavalli S; Park JH; Kariuki NN; Zaccarine SF; Pylypenko S; Myers DJ; Ulsh M; Mauger SA
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45068-45079. PubMed ID: 31697470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells.
    Ding L; Wang W; Xie Z; Li K; Yu S; Capuano CB; Keane A; Ayers K; Zhang FY
    ACS Appl Mater Interfaces; 2023 May; 15(20):24284-24295. PubMed ID: 37167124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-state water electrolysis with an alkaline membrane.
    Leng Y; Chen G; Mendoza AJ; Tighe TB; Hickner MA; Wang CY
    J Am Chem Soc; 2012 Jun; 134(22):9054-7. PubMed ID: 22587676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. KIr
    Li Z; Li X; Wang M; Wang Q; Wei P; Jana S; Liao Z; Yu J; Lu F; Liu T; Wang G
    Adv Mater; 2024 May; ():e2402643. PubMed ID: 38718084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance Comparison of Proton Exchange Membrane Water Electrolysis Cell Using Channel and PTL Flow Fields through Three-Dimensional Two-Phase Flow Simulation.
    Park S; Lee W; Na Y
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes.
    Min K; Al Munsur AZ; Paek SY; Jeon S; Lee SY; Kim TH
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15616-15624. PubMed ID: 36926797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Gravity and Various Operating Conditions on Proton Exchange Membrane Water Electrolysis Cell Performance.
    Choi Y; Lee W; Na Y
    Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ formation of grain boundaries on a supported hybrid to boost water oxidation activity of iridium oxide.
    Sun W; Wang Z; Tian X; Deng H; Liao J; Ma C; Yang J; Gong X; Huang W; Ge C
    Nanoscale; 2021 Aug; 13(32):13845-13857. PubMed ID: 34477659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.