These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38257223)

  • 1. In Situ Growth of Sodium Manganese Hexacyanoferrate on Carbon Nanotubes for High-Performance Sodium-Ion Batteries.
    Guo C; Xing J; Shamshad A; Jiang J; Wang D; Wang X; Bai Y; Chen H; Sun W; An N; Zhou A
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pillar Effect of Large-Size Alkaline Ions on the Electrochemical Stability of Sodium Manganese Hexacyanoferrate for Sodium-Ion Batteries.
    Zhou A; Guo C; Jiang J; Wang D; Wang X; Ali S; Li J; Xia W; Fu M; Sun W
    Small; 2023 Dec; 19(50):e2304887. PubMed ID: 37632313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-Long Cycle of Prussian Blue Analogs Achieved by Equilibrium Electrolyte for Aqueous Sodium-Ion Batteries.
    Liu J; Yang C; Wen B; Li B; Liu Y
    Small; 2023 Nov; 19(46):e2303896. PubMed ID: 37460403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries.
    Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB
    Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method.
    Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activating the Extra Redox Couple of Co
    Tian Z; Chen Y; Sun S; Jiang X; Liu H; Wang C; Huang Q; Liu C; Wang Y; Guo L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):611-621. PubMed ID: 34928585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Graphene Oxide-Anchored Manganese Hexacyanoferrate with Low Interstitial H
    Wang H; Xu E; Yu S; Li D; Quan J; Xu L; Wang L; Jiang Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34222-34229. PubMed ID: 30221930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries.
    Cao T; Zhang F; Chen M; Shao T; Li Z; Xu Q; Cheng D; Liu H; Xia Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26924-26935. PubMed ID: 34060801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Voltage and Stable Manganese Hexacyanoferrate/Zinc Batteries Using Gel Electrolytes.
    Luo L; Liu Y; Shen Z; Wen Z; Chen S; Hong G
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29032-29041. PubMed ID: 37289989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A string of nickel hexacyanoferrate nanocubes coaxially grown on a CNT@bipolar conducting polymer as a high-performance cathode material for sodium-ion batteries.
    Wang Z; Liu Y; Wu Z; Guan G; Zhang D; Zheng H; Xu S; Liu S; Hao X
    Nanoscale; 2017 Jan; 9(2):823-831. PubMed ID: 27991640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode.
    Luo Y; Peng J; Yin S; Xue L; Yan Y
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries.
    Luo J; Sun S; Peng J; Liu B; Huang Y; Wang K; Zhang Q; Li Y; Jin Y; Liu Y; Qiu Y; Li Q; Han J; Huang Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25317-25322. PubMed ID: 28691793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNT-Decorated Na
    Tang L; Liu X; Li Z; Pu X; Zhang J; Xu Q; Liu H; Wang YG; Xia Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27813-27822. PubMed ID: 31291080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polypyrrole-Coated K
    Chen M; Li X; Yan Y; Yang Y; Xu Q; Liu H; Xia Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1092-1101. PubMed ID: 34968036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Synthesis of Three-Dimensional Na
    Zhao L; Liu X; Li J; Diao X; Zhang J
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries.
    Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J
    RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode for sodium-ion batteries.
    Quan J; Xu E; Zhu H; Chang Y; Zhu Y; Li P; Sun Z; Yu D; Jiang Y
    Phys Chem Chem Phys; 2021 Jan; 23(3):2491-2499. PubMed ID: 33463643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Composite of LiNi
    Zhang L; Fu J; Zhang C
    Nanoscale Res Lett; 2017 Dec; 12(1):376. PubMed ID: 28565884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freestanding, Hierarchical, and Porous Bilayered Na
    Xu G; Liu X; Huang S; Li L; Wei X; Cao J; Yang L; Chu PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):706-716. PubMed ID: 31799821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries.
    Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.