BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38257313)

  • 1. Glassy Powder Derived from Waste Printed Circuit Boards for Methylene Blue Adsorption.
    Javaid S; Zanoletti A; Serpe A; Bontempi E; Alessandri I; Vassalini I
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of Typical Electronic Waste-Printed Circuit Boards (WPCBs): A Short Review.
    Ji X; Yang M; Wan A; Yu S; Yao Z
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of organic pollutants by Ag, Cu and Sn doped waste non-metallic printed circuit boards.
    Ramaswamy K; Radha V; Malathi M; Vithal M; Munirathnam NR
    Waste Manag; 2017 Feb; 60():629-635. PubMed ID: 27712944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers.
    Wang Q; Zhang B; Yu S; Xiong J; Yao Z; Hu B; Yan J
    ACS Omega; 2020 Jul; 5(29):17850-17856. PubMed ID: 32743155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An innovative method of recycling metals in printed circuit board (PCB) using solutions from PCB production.
    Tan Q; Liu L; Yu M; Li J
    J Hazard Mater; 2020 May; 390():121892. PubMed ID: 31883733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new approach to designing easily recyclable printed circuit boards.
    Khrustalev D; Tirzhanov A; Khrustaleva A; Mustafin M; Yedrissov A
    Sci Rep; 2022 Dec; 12(1):22199. PubMed ID: 36564465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray transmission imaging of waste printed circuit boards for value estimation in recycling using machine learning.
    Firsching M; Ottenweller M; Leisner J; Rüger S
    Waste Manag Res; 2024 Jun; ():734242X241257084. PubMed ID: 38902936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent.
    Hadi P; Gao P; Barford JP; McKay G
    J Hazard Mater; 2013 May; 252-253():166-70. PubMed ID: 23523907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waste-to-Resource: New application of modified mine silicate waste to remove Pb
    Ghaedi S; Seifpanahi-Shabani K; Sillanpää M
    Chemosphere; 2022 Apr; 292():133412. PubMed ID: 34974049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound-enhanced catalytic degradation of simulated dye wastewater using waste printed circuit boards: catalytic performance and artificial neuron network-based simulation.
    Jiang H; Zahmatkesh S; Yang J; Wang H; Wang C
    Environ Monit Assess; 2022 Nov; 195(1):144. PubMed ID: 36418598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the non-metal fraction of the processed waste printed circuit boards.
    Kumar A; Holuszko ME; Janke T
    Waste Manag; 2018 May; 75():94-102. PubMed ID: 29449113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cleaner approach for high-efficiency regeneration of base and precious metals from waste printed circuit boards through stepwise oxido-acidic and thiocyanate leaching.
    Rezaee M; Abdollahi H; Saneie R; Mohammadzadeh A; Rezaei A; Karimi Darvanjooghi MH; Brar SK; Magdouli S
    Chemosphere; 2022 Jul; 298():134283. PubMed ID: 35288186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective.
    Dong Y; Mingtana N; Zan J; Lin H
    J Environ Manage; 2023 Dec; 348():119354. PubMed ID: 37864939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
    Long L; Sun S; Zhong S; Dai W; Liu J; Song W
    J Hazard Mater; 2010 May; 177(1-3):626-32. PubMed ID: 20060640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to recycling of glass fibers from nonmetal materials of waste printed circuit boards.
    Zheng Y; Shen Z; Ma S; Cai C; Zhao X; Xing Y
    J Hazard Mater; 2009 Oct; 170(2-3):978-82. PubMed ID: 19520504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal biotechnology for urban mining of metals from waste printed circuit boards: A review.
    Trivedi A; Vishwakarma A; Saawarn B; Mahanty B; Hait S
    J Environ Manage; 2022 Dec; 323():116133. PubMed ID: 36099867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of waste printed circuit board by green solvent using ionic liquid.
    Zhu P; Chen Y; Wang LY; Zhou M
    Waste Manag; 2012 Oct; 32(10):1914-8. PubMed ID: 22683227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.