These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38257380)

  • 1. Rigid Rod-like Viscoelastic Behaviors of Methyl Cellulose Samples with a Wide Range of Molar Masses Dissolved in Aqueous Solutions.
    Nakagawa D; Saiki E; Horikawa Y; Shikata T
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and Structure of Hydroxyethyl Cellulose Ether with a Wide Range of Average Molar Masses in Aqueous Solutions.
    Yoshida M; Iwase H; Shikata T
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Conformation of Hydroxypropylmethyl Cellulose with a Wide Range of Molar Masses in Aqueous Solution─Effects of Hydroxypropyl Group Addition.
    Saiki E; Iwase H; Horikawa Y; Shikata T
    Biomacromolecules; 2023 Sep; 24(9):4199-4207. PubMed ID: 37594913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongated Rodlike Particle Formation of Methyl Cellulose in Aqueous Solution.
    Saiki E; Yoshida M; Kurahashi K; Iwase H; Shikata T
    ACS Omega; 2022 Aug; 7(33):28849-28859. PubMed ID: 36033728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconsideration of the conformation of methyl cellulose and hydroxypropyl methyl cellulose ethers in aqueous solution.
    Arai K; Horikawa Y; Shikata T; Iwase H
    RSC Adv; 2020 May; 10(32):19059-19066. PubMed ID: 35518322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear rheology of methyl cellulose based solutions for cell mechanical measurements at high shear rates.
    Büyükurgancı B; Basu SK; Neuner M; Guck J; Wierschem A; Reichel F
    Soft Matter; 2023 Mar; 19(9):1739-1748. PubMed ID: 36779239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological properties and molecular structure of tunicate cellulose in LiCl/1,3-dimethyl-2-imidazolidinone.
    Tamai N; Tatsumi D; Matsumoto T
    Biomacromolecules; 2004; 5(2):422-32. PubMed ID: 15003002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological properties of wormlike micellar solutions being available in wide temperature range in sucrose palmitate systems.
    Yamamoto M; Ando H; Arima S; Aramaki K
    J Oleo Sci; 2009; 58(6):303-11. PubMed ID: 19430192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems.
    Shrestha RG; Shrestha LK; Aramaki K
    J Colloid Interface Sci; 2008 Jun; 322(2):596-604. PubMed ID: 18395738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide.
    Wang L; Gao L; Cheng B; Ji X; Song J; Lu F
    Carbohydr Polym; 2014 Sep; 110():292-7. PubMed ID: 24906758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological characterization of galactomannans extracted from seeds of Caesalpinia pulcherrima.
    Thombre NA; Gide PS
    Carbohydr Polym; 2013 Apr; 94(1):547-54. PubMed ID: 23544573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions.
    Rudaz C; Budtova T
    Carbohydr Polym; 2013 Feb; 92(2):1966-71. PubMed ID: 23399245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and rheological characterizations of nanoparticles of environment-sensitive hydrophobic alginate in aqueous solution.
    Chen K; Li J; Feng Y; He F; Zhou Q; Xiao D; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):617-627. PubMed ID: 27770934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological behavior of worm-like micelles in a mixed nonionic surfactant system of a polyoxyethylene phytosterol and a glycerin fatty acid monoester.
    Hashizaki K; Tamaki N; Taguchi H; Saito Y; Tsuchiya K; Sakai H; Abe M
    Chem Pharm Bull (Tokyo); 2008 Dec; 56(12):1682-6. PubMed ID: 19043239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow behavior and linear viscoelasticity of cellulose 1-allyl-3-methylimidazolium formate solutions.
    Lu F; Wang L; Ji X; Cheng B; Song J; Gou X
    Carbohydr Polym; 2014 Jan; 99():132-9. PubMed ID: 24274489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution.
    Guo Y; Zhou J; Zhang L
    Biomacromolecules; 2011 May; 12(5):1927-34. PubMed ID: 21476547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique gelation behavior of cellulose in NaOH/urea aqueous solution.
    Cai J; Zhang L
    Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheological stability of carbomer in hydroalcoholic gels: Influence of alcohol type.
    Kolman M; Smith C; Chakrabarty D; Amin S
    Int J Cosmet Sci; 2021 Dec; 43(6):748-763. PubMed ID: 34741768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods.
    Boluk Y; Zhao L; Incani V
    Langmuir; 2012 Apr; 28(14):6114-23. PubMed ID: 22448630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.
    Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG
    J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.