These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38257473)
1. Nonprehensile Manipulation for Rapid Object Spinning via Multisensory Learning from Demonstration. Shin KJ; Jeon S Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257473 [TBL] [Abstract][Full Text] [Related]
2. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation. Zhu T; Wu R; Hang J; Lin X; Sun Y IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035 [TBL] [Abstract][Full Text] [Related]
3. Visual information following object grasp supports digit position variability and swift anticipatory force control. Bland JT; Davare M; Marneweck M J Neurophysiol; 2023 Jun; 129(6):1389-1399. PubMed ID: 37162174 [TBL] [Abstract][Full Text] [Related]
4. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots. Elangovan N; Chang CM; Gao G; Liarokapis M Front Robot AI; 2022; 9():808154. PubMed ID: 35546901 [TBL] [Abstract][Full Text] [Related]
5. Multifingered Robot Hand Compliant Manipulation Based on Vision-Based Demonstration and Adaptive Force Control. Zeng C; Li S; Chen Z; Yang C; Sun F; Zhang J IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5452-5463. PubMed ID: 35767493 [TBL] [Abstract][Full Text] [Related]
6. Distinct sensorimotor mechanisms underlie the control of grasp and manipulation forces for dexterous manipulation. Wu YH; Santello M Sci Rep; 2023 Jul; 13(1):12037. PubMed ID: 37491565 [TBL] [Abstract][Full Text] [Related]
7. On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands. Chang CM; Gerez L; Elangovan N; Zisimatos A; Liarokapis M Front Neurorobot; 2019; 13():91. PubMed ID: 31787889 [TBL] [Abstract][Full Text] [Related]
8. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback. Jara CA; Pomares J; Candelas FA; Torres F Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466 [TBL] [Abstract][Full Text] [Related]
9. Design and Calibration of a Force/Tactile Sensor for Dexterous Manipulation. Costanzo M; De Maria G; Natale C; Pirozzi S Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823548 [TBL] [Abstract][Full Text] [Related]
10. Effects of aging on conditional visuomotor learning for grasping and lifting eccentrically weighted objects. Rao N; Mehta N; Patel P; Parikh PJ J Appl Physiol (1985); 2021 Sep; 131(3):937-948. PubMed ID: 34264127 [TBL] [Abstract][Full Text] [Related]
11. Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses. Rivera P; Valarezo AƱazco E; Kim TS Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450741 [TBL] [Abstract][Full Text] [Related]
12. Development of a Two-Finger Haptic Robotic Hand with Novel Stiffness Detection and Impedance Control. Mohammadi V; Shahbad R; Hosseini M; Gholampour MH; Shiry Ghidary S; Najafi F; Behboodi A Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676202 [TBL] [Abstract][Full Text] [Related]
13. Neural Representations of Sensorimotor Memory- and Digit Position-Based Load Force Adjustments Before the Onset of Dexterous Object Manipulation. Marneweck M; Barany DA; Santello M; Grafton ST J Neurosci; 2018 May; 38(20):4724-4737. PubMed ID: 29686047 [TBL] [Abstract][Full Text] [Related]
14. Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration. Siddiqui MS; Coppola C; Solak G; Jamone L Front Robot AI; 2021; 8():703869. PubMed ID: 34458325 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical Tactile-Based Control Decomposition of Dexterous In-Hand Manipulation Tasks. Veiga F; Akrour R; Peters J Front Robot AI; 2020; 7():521448. PubMed ID: 33501302 [TBL] [Abstract][Full Text] [Related]
16. Continuous supplementary tactile feedback can be applied (and then removed) to enhance precision manipulation. Cappello L; Alghilan W; Gabardi M; Leonardis D; Barsotti M; Frisoli A; Cipriani C J Neuroeng Rehabil; 2020 Aug; 17(1):120. PubMed ID: 32859222 [TBL] [Abstract][Full Text] [Related]
17. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation. Jenmalm P; Dahlstedt S; Johansson RS J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826 [TBL] [Abstract][Full Text] [Related]
18. Towards Understanding Complex Human Dexterous Manipulation Strategies: Kinematics of Gaiting-based Object Rotations. Hong J; Dollar AM Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4024-4029. PubMed ID: 33018882 [TBL] [Abstract][Full Text] [Related]
19. Tactile Feedback in Closed-Loop Control of Myoelectric Hand Grasping: Conveying Information of Multiple Sensors Simultaneously via a Single Feedback Channel. Mayer RM; Garcia-Rosas R; Mohammadi A; Tan Y; Alici G; Choong P; Oetomo D Front Neurosci; 2020; 14():348. PubMed ID: 32395102 [TBL] [Abstract][Full Text] [Related]
20. Review of Learning-Based Robotic Manipulation in Cluttered Environments. Mohammed MQ; Kwek LC; Chua SC; Al-Dhaqm A; Nahavandi S; Eisa TAE; Miskon MF; Al-Mhiqani MN; Ali A; Abaker M; Alandoli EA Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]