These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38257501)

  • 1. Minimizing Fuel Consumption for Surveillance Unmanned Aerial Vehicles Using Parallel Particle Swarm Optimization.
    Roberge V; Labonté G; Tarbouchi M
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Global Path Planning Optimization for Cellular-Connected UAVs under Link Reliability Constraint.
    Behjati M; Nordin R; Zulkifley MA; Abdullah NF
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-Cloud Collaboration Navigation Planning Method for Unmanned Aerial Vehicles Used in Small Areas.
    Xiong H; Yu B; Yi Q; He C
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power-Efficient Wireless Coverage Using Minimum Number of UAVs.
    Sawalmeh A; Othman NS; Liu G; Khreishah A; Alenezi A; Alanazi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption.
    Venkatachalam S; Sundar K; Rathinam S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Deployment of Multi-UAVs in Massively Crowded Events.
    Sawalmeh A; Othman NS; Shakhatreh H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Algorithm on GPU for Wireless Sensor Data Acquisition Using a Team of Unmanned Aerial Vehicles.
    Roberge V; Tarbouchi M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control.
    de Alcantara Andrade FA; Reinier Hovenburg A; Netto de Lima L; Dahlin Rodin C; Johansen TA; Storvold R; Moraes Correia CA; Barreto Haddad D
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parallel particle swarm optimization and enhanced sparrow search algorithm for unmanned aerial vehicle path planning.
    Wang Z; Sun G; Zhou K; Zhu L
    Heliyon; 2023 Apr; 9(4):e14784. PubMed ID: 37123920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization.
    Shao S; Peng Y; He C; Du Y
    ISA Trans; 2020 Feb; 97():415-430. PubMed ID: 31416619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous Mission of Multi-UAV for Optimal Area Coverage.
    Hong Y; Jung S; Kim S; Cha J
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33918491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solving the Multi-Functional Heterogeneous UAV Cooperative Mission Planning Problem Using Multi-Swarm Fruit Fly Optimization Algorithm.
    Luo R; Zheng H; Guo J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs.
    Wang X; Jiang P; Li D; Sun T
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending QGroundControl for Automated Mission Planning of UAVs.
    Ramirez-Atencia C; Camacho D
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30022014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trajectory Optimization in a Cooperative Aerial Reconnaissance Model.
    Stodola P; Drozd J; Nohel J; Hodický J; Procházka D
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensor-Model-Based Trajectory Optimization for UAVs to Enhance Detection Performance: An Optimal Control Approach and Experimental Results.
    Zwick M; Gerdts M; Stütz P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrusion Detection of UAVs Based on the Deep Belief Network Optimized by PSO.
    Tan X; Su S; Zuo Z; Guo X; Sun X
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PPS: Energy-Aware Grid-Based Coverage Path Planning for UAVs Using Area Partitioning in the Presence of NFZs.
    Ghaddar A; Merei A; Natalizio E
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring.
    Mir I; Eisa SA; Taha H; Maqsood A; Akhtar S; Islam TU
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34325408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.