These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38257505)

  • 21. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure.
    Wang R; Wang L; Liu R; Li X; Wu Y; Ran F
    ACS Nano; 2024 Jan; 18(4):2611-2648. PubMed ID: 38221745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-Engineered Li
    Gangaja B; Nair S; Santhanagopalan D
    Nanomicro Lett; 2020 Jan; 12(1):30. PubMed ID: 34138269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.
    Jhu CY; Wang YW; Shu CM; Chang JC; Wu HC
    J Hazard Mater; 2011 Aug; 192(1):99-107. PubMed ID: 21612866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage.
    Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W
    J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigations of Li-Ion Battery Thermal Management Systems Based on Heat Pipes: A Review.
    Wu H; Niu M; Shao Y; Wang M; Li M; Liu X; Li Z
    ACS Omega; 2024 Jan; 9(1):97-116. PubMed ID: 38222571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-stable Li||LiFePO
    Lin Y; Zhang X; Liu Y; Wang Q; Lin C; Chen S; Zhang Y
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):14-23. PubMed ID: 35973254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-Flammable Electrolyte Enables High-Voltage and Wide-Temperature Lithium-Ion Batteries with Fast Charging.
    Zou Y; Ma Z; Liu G; Li Q; Yin D; Shi X; Cao Z; Tian Z; Kim H; Guo Y; Sun C; Cavallo L; Wang L; Alshareef HN; Sun YK; Ming J
    Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202216189. PubMed ID: 36567260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity Enhancement of FBG-Based Strain Sensor.
    Li R; Chen Y; Tan Y; Zhou Z; Li T; Mao J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries.
    Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J
    Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.
    Lee CY; Lee SJ; Tang MS; Chen PC
    Sensors (Basel); 2011; 11(10):9942-50. PubMed ID: 22163735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen-Based Anion Redox for Lithium Batteries.
    Li M; Bi X; Amine K; Lu J
    Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-Dimensional Materials to Address the Lithium Battery Challenges.
    Rojaee R; Shahbazian-Yassar R
    ACS Nano; 2020 Mar; 14(3):2628-2658. PubMed ID: 32083832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions.
    Ouyang D; Chen M; Liu J; Wei R; Weng J; Wang J
    RSC Adv; 2018 Sep; 8(58):33414-33424. PubMed ID: 35548129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-Rechargeable Li-Ion Batteries using TiS
    Kumar A; Hammad R; Pahuja M; Arenal R; Ghosh K; Ghosh S; Narayanan TN
    Small; 2023 Sep; 19(38):e2303319. PubMed ID: 37194967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.