BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 38257579)

  • 41. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors.
    Stack E; Agarwal V; King R; Burnett M; Tahavori F; Janko B; Harwin W; Ashburn A; Kunkel D
    Gait Posture; 2018 May; 62():321-326. PubMed ID: 29614464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
    Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A
    Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine Learning Predicts the Fall Risk of Total Hip Arthroplasty Patients Based on Wearable Sensor Instrumented Performance Tests.
    Polus JS; Bloomfield RA; Vasarhelyi EM; Lanting BA; Teeter MG
    J Arthroplasty; 2021 Feb; 36(2):573-578. PubMed ID: 32928593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A meta-learning algorithm for respiratory flow prediction from FBG-based wearables in unrestrained conditions.
    Filosa M; Massari L; Ferraro D; D'Alesio G; D'Abbraccio J; Aliperta A; Presti DL; Di Tocco J; Zaltieri M; Massaroni C; Carrozza MC; Ferrarin M; Di Rienzo M; Schena E; Oddo CM
    Artif Intell Med; 2022 Aug; 130():102328. PubMed ID: 35809967
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recognition physical activities with optimal number of wearable sensors using data mining algorithms and deep belief network.
    Al-Fatlawi AH; Fatlawi HK; Sai Ho Ling
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2871-2874. PubMed ID: 29060497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reliable Detection of Atrial Fibrillation with a Medical Wearable during Inpatient Conditions.
    Jacobsen M; Dembek TA; Ziakos AP; Gholamipoor R; Kobbe G; Kollmann M; Blum C; Müller-Wieland D; Napp A; Heinemann L; Deubner N; Marx N; Isenmann S; Seyfarth M
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32993132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The 2023 wearable photoplethysmography roadmap.
    Charlton PH; Allen J; Bailón R; Baker S; Behar JA; Chen F; Clifford GD; Clifton DA; Davies HJ; Ding C; Ding X; Dunn J; Elgendi M; Ferdoushi M; Franklin D; Gil E; Hassan MF; Hernesniemi J; Hu X; Ji N; Khan Y; Kontaxis S; Korhonen I; Kyriacou PA; Laguna P; Lázaro J; Lee C; Levy J; Li Y; Liu C; Liu J; Lu L; Mandic DP; Marozas V; Mejía-Mejía E; Mukkamala R; Nitzan M; Pereira T; Poon CCY; Ramella-Roman JC; Saarinen H; Shandhi MMH; Shin H; Stansby G; Tamura T; Vehkaoja A; Wang WK; Zhang YT; Zhao N; Zheng D; Zhu T
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37494945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: a scoping review.
    Small SR; Bullock GS; Khalid S; Barker K; Trivella M; Price AJ
    BMJ Open; 2019 Dec; 9(12):e033832. PubMed ID: 31888943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Review of Wearable Devices and Data Collection Considerations for Connected Health.
    Vijayan V; Connolly JP; Condell J; McKelvey N; Gardiner P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451032
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review.
    Ahmed A; Aziz S; Abd-Alrazaq A; Farooq F; Sheikh J
    J Med Internet Res; 2022 Aug; 24(8):e36010. PubMed ID: 35943772
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks.
    Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Role of Wearable Sensors to Monitor Physical Activity and Sleep Patterns in Older Adult Inpatients: A Structured Review.
    Bate GL; Kirk C; Rehman RZU; Guan Y; Yarnall AJ; Del Din S; Lawson RA
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430796
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning and wearable sensors at preoperative assessments: Functional recovery prediction to set realistic expectations for knee replacements.
    Bloomfield RA; Broberg JS; Williams HA; Lanting BA; McIsaac KA; Teeter MG
    Med Eng Phys; 2021 Mar; 89():14-21. PubMed ID: 33608121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel Wearable Seismocardiography and Machine Learning Algorithms Can Assess Clinical Status of Heart Failure Patients.
    Inan OT; Baran Pouyan M; Javaid AQ; Dowling S; Etemadi M; Dorier A; Heller JA; Bicen AO; Roy S; De Marco T; Klein L
    Circ Heart Fail; 2018 Jan; 11(1):e004313. PubMed ID: 29330154
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs.
    Teymourian H; Parrilla M; Sempionatto JR; Montiel NF; Barfidokht A; Van Echelpoel R; De Wael K; Wang J
    ACS Sens; 2020 Sep; 5(9):2679-2700. PubMed ID: 32822166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Personalized seizure detection using logistic regression machine learning based on wearable ECG-monitoring device.
    Jeppesen J; Christensen J; Johansen P; Beniczky S
    Seizure; 2023 Apr; 107():155-161. PubMed ID: 37068328
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards On-Device Dehydration Monitoring Using Machine Learning from Wearable Device's Data.
    Sabry F; Eltaras T; Labda W; Hamza F; Alzoubi K; Malluhi Q
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Windows Into Human Health Through Wearables Data Analytics.
    Witt D; Kellogg R; Snyder M; Dunn J
    Curr Opin Biomed Eng; 2019 Mar; 9():28-46. PubMed ID: 31832566
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review.
    Huang JD; Wang J; Ramsey E; Leavey G; Chico TJA; Condell J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
    Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE
    Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.