BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38257642)

  • 21. A Service-Constrained Positioning Strategy for an Autonomous Fleet of Airborne Base Stations.
    José-Torra F; Pascual-Iserte A; Vidal J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. UAV Positioning Mechanisms in Landing Stations: Classification and Engineering Design Review.
    Galimov M; Fedorenko R; Klimchik A
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motion Estimation by Hybrid Optical Flow Technology for UAV Landing in an Unvisited Area.
    Cheng HW; Chen TL; Tien CH
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897741
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobility Control of Unmanned Aerial Vehicle as Communication Relay to Optimize Ground-to-Air Uplinks.
    Wu G; Gao X; Wan K
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UAV sensor failures dataset: Biomisa arducopter sensory critique (BASiC).
    Ahmad MW; Akram MU
    Data Brief; 2024 Feb; 52():110069. PubMed ID: 38304386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Precision Landing Tests of Tethered Multicopter and VTOL UAV on Moving Landing Pad on a Lake.
    Kownacki C; Ambroziak L; Ciężkowski M; Wolniakowski A; Romaniuk S; Bożko A; Ołdziej D
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies.
    Ding J; Mei H; I CL; Zhang H; Liu W
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UAV Positioning for Throughput Maximization Using Deep Learning Approaches.
    Yayeh Munaye Y; Lin HP; Adege AB; Tarekegn GB
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ROS-based ground stereo vision detection: implementation and experiments.
    Hu T; Zhao B; Tang D; Zhang D; Kong W; Shen L
    Robotics Biomim; 2016; 3(1):14. PubMed ID: 27642549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-Time Monocular Vision System for UAV Autonomous Landing in Outdoor Low-Illumination Environments.
    Lin S; Jin L; Chen Z
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vision-based safe autonomous UAV docking with panoramic sensors.
    Nguyen PT; Westerlund T; Peña Queralta J
    Front Robot AI; 2023; 10():1223157. PubMed ID: 38077455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altitude Measurement-Based Optimization of the Landing Process of UAVs.
    Horla D; Giernacki W; Cieślak J; Campoy P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-Unmanned Aerial Vehicle (UAV) Cooperative Fault Detection Employing Differential Global Positioning (DGPS), Inertial and Vision Sensors.
    Heredia G; Caballero F; Maza I; Merino L; Viguria A; Ollero A
    Sensors (Basel); 2009; 9(9):7566-79. PubMed ID: 22400008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-GNSS Precise Point Positioning with UWB Tightly Coupled Integration.
    Huang Z; Jin S; Su K; Tang X
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual Navigation and Landing Control of an Unmanned Aerial Vehicle on a Moving Autonomous Surface Vehicle via Adaptive Learning.
    Zhang HT; Hu BB; Xu Z; Cai Z; Liu B; Wang X; Geng T; Zhong S; Zhao J
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5345-5355. PubMed ID: 34048350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Power-Efficient Wireless Coverage Using Minimum Number of UAVs.
    Sawalmeh A; Othman NS; Liu G; Khreishah A; Alenezi A; Alanazi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperative UAV-UGV Autonomous Power Pylon Inspection: An Investigation of Cooperative Outdoor Vehicle Positioning Architecture.
    Cantieri A; Ferraz M; Szekir G; Antônio Teixeira M; Lima J; Schneider Oliveira A; Aurélio Wehrmeister M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual Servoing Approach to Autonomous UAV Landing on a Moving Vehicle.
    Keipour A; Pereira GAS; Bonatti R; Garg R; Rastogi P; Dubey G; Scherer S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.