These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38257710)

  • 1. Robot Grasp Planning: A Learning from Demonstration-Based Approach.
    Wang K; Fan Y; Sakuma I
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D-Printed Fin Ray Effect Inspired Soft Robotic Gripper with Force Feedback.
    Yang Y; Jin K; Zhu H; Song G; Lu H; Kang L
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multimodal, Reconfigurable Workspace Soft Gripper for Advanced Grasping Tasks.
    Jain S; Dontu S; Teoh JEM; Alvarado PVY
    Soft Robot; 2023 Jun; 10(3):527-544. PubMed ID: 36346280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping.
    Sui D; Zhu Y; Zhao S; Wang T; Agrawal SK; Zhang H; Zhao J
    Soft Robot; 2022 Feb; 9(1):36-56. PubMed ID: 33275516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile Soft Robot Gripper Enabled by Stiffness and Adhesion Tuning via Thermoplastic Composite.
    Coulson R; Stabile CJ; Turner KT; Majidi C
    Soft Robot; 2022 Apr; 9(2):189-200. PubMed ID: 33481683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Grasp Configuration Through Object-Specific Hand Primitives for Posture Planning of Anthropomorphic Hands.
    Liu B; Jiang L; Fan S; Dai J
    Front Neurorobot; 2021; 15():740262. PubMed ID: 34603004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic grasp planning of multifingered robot hands based on asymptotic stability.
    Guo G; Gruver WA
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(5):764-8. PubMed ID: 18263074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework.
    Ficuciello F; Migliozzi A; Laudante G; Falco P; Siciliano B
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure Handling of Robotic Pick and Place Tasks With Multimodal Cues Under Partial Object Occlusion.
    Zhu F; Wang L; Wen Y; Yang L; Pan J; Wang Z; Wang W
    Front Neurorobot; 2021; 15():570507. PubMed ID: 33762921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Alternative Uses of Structural Compliance for the Development of Adaptive Robot Grippers and Hands.
    Chang CM; Gerez L; Elangovan N; Zisimatos A; Liarokapis M
    Front Neurorobot; 2019; 13():91. PubMed ID: 31787889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand.
    Deng Z; Gao G; Frintrop S; Sun F; Zhang C; Zhang J
    Front Neurorobot; 2019; 13():60. PubMed ID: 31417391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force transmission analysis of surface coating materials for multi-fingered robotic grippers.
    Erdemir G
    PeerJ Comput Sci; 2021; 7():e401. PubMed ID: 33834096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation.
    Zhu T; Wu R; Hang J; Lin X; Sun Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers.
    Hao Y; Visell Y
    Front Robot AI; 2021; 8():632006. PubMed ID: 34307466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research Progress on Low Damage Grasping of Fruit, Vegetable and Meat Raw Materials.
    Xu Z; Shi W; Zhao D; Li K; Li J; Dong J; Han Y; Zhao J; Bai Y
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes.
    Li T; Wang F; Ru C; Jiang Y; Li J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-stage grasp detection method for sequential robotic grasping in stacking scenarios.
    Zhang J; Yin B; Zhong Y; Wei Q; Zhao J; Bilal H
    Math Biosci Eng; 2024 Feb; 21(2):3448-3472. PubMed ID: 38454735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Multi-Stage Grasp Detection Method for Kinova Robot in Stacked Environments.
    Dong X; Jiang Y; Zhao F; Xia J
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.