BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38258060)

  • 1. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons.
    Hori I; Harashima H; Yamada Y
    Pharmaceutics; 2023 Dec; 16(1):. PubMed ID: 38258060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPK Preferentially Depresses Retrograde Transport of Axonal Mitochondria during Localized Nutrient Deprivation.
    Watters O; Connolly NMC; König HG; Düssmann H; Prehn JHM
    J Neurosci; 2020 Jun; 40(25):4798-4812. PubMed ID: 32393534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Mitochondrial Targeting Lipid Nanoparticle Encapsulating Berberine.
    Hori I; Harashima H; Yamada Y
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon.
    Tao K; Matsuki N; Koyama R
    Dev Neurobiol; 2014 Jun; 74(6):557-73. PubMed ID: 24218086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons.
    Mandal A; Wong HC; Pinter K; Mosqueda N; Beirl A; Lomash RM; Won S; Kindt KS; Drerup CM
    J Neurosci; 2021 Feb; 41(7):1371-1392. PubMed ID: 33376159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status.
    Lu J; Cao Y; Cheng K; Xu B; Wang T; Yang Q; Yang Q; Feng X; Xia Q
    Exp Cell Res; 2015 Jun; 334(2):194-206. PubMed ID: 25889370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function.
    McNair LF; Andersen JV; Aldana BI; Hohnholt MC; Nissen JD; Sun Y; Fischer KD; Sonnewald U; Nyberg N; Webster SC; Kapur K; Rimmele TS; Barone I; Hawks-Mayer H; Lipton JO; Hodgson NW; Hensch TK; Aoki CJ; Rosenberg PA; Waagepetersen HS
    J Neurosci; 2019 Jun; 39(25):4847-4863. PubMed ID: 30926746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial behavior during axon regeneration/degeneration in vivo.
    Kiryu-Seo S; Kiyama H
    Neurosci Res; 2019 Feb; 139():42-47. PubMed ID: 30179641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Behavior in Axon Degeneration and Regeneration.
    Wang B; Huang M; Shang D; Yan X; Zhao B; Zhang X
    Front Aging Neurosci; 2021; 13():650038. PubMed ID: 33762926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of mitochondrial traffic to axon determination and differential branch growth.
    Ruthel G; Hollenbeck PJ
    J Neurosci; 2003 Sep; 23(24):8618-24. PubMed ID: 13679431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear-encoded mitochondrial precursor protein: intramitochondrial delivery to dendrites and axon terminals of neurons and regulation by neuronal activity.
    Liu S; Wong-Riley M
    J Neurosci; 1994 Sep; 14(9):5338-51. PubMed ID: 8083739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in
    Knowlton WM; Hubert T; Wu Z; Chisholm AD; Jin Y
    Front Neurosci; 2017; 11():263. PubMed ID: 28539870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices as model platforms of CNS injury-ischemia to study axonal regeneration by regulating mitochondrial transport and bioenergetic metabolism.
    Huang N; Sheng ZH
    Cell Regen; 2022 Oct; 11(1):33. PubMed ID: 36184647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes.
    Aghanoori MR; Smith DR; Shariati-Ievari S; Ajisebutu A; Nguyen A; Desmond F; Jesus CHA; Zhou X; Calcutt NA; Aliani M; Fernyhough P
    Mol Metab; 2019 Feb; 20():149-165. PubMed ID: 30545741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of mitochondrial transport in neurons.
    Lin MY; Sheng ZH
    Exp Cell Res; 2015 May; 334(1):35-44. PubMed ID: 25612908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons.
    Hillefors M; Gioio AE; Mameza MG; Kaplan BB
    Cell Mol Neurobiol; 2007 Sep; 27(6):701-16. PubMed ID: 17619140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals.
    Pinault D
    Brain Res Brain Res Rev; 1995 Jul; 21(1):42-92. PubMed ID: 8547954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased anterograde transport coupled with sustained retrograde transport contributes to reduced axonal mitochondrial density in tauopathy neurons.
    Sabui A; Biswas M; Somvanshi PR; Kandagiri P; Gorla M; Mohammed F; Tammineni P
    Front Mol Neurosci; 2022; 15():927195. PubMed ID: 36245925
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.