These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38258146)

  • 1. Image-Based Feedback of Multi-Component Microdroplets for Ultra-Monodispersed Library Preparation.
    Cantwell C; McGrath JS; Smith CA; Whyte G
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based closed-loop feedback for highly mono-dispersed microdroplet production.
    Crawford DF; Smith CA; Whyte G
    Sci Rep; 2017 Sep; 7(1):10545. PubMed ID: 28874820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic formation of highly monodispersed multiple cored droplets using needle-based system in parallel mode.
    Lian Z; Chan Y; Luo Y; Yang X; Koh KS; Wang J; Chen GZ; Ren Y; He J
    Electrophoresis; 2020 Jun; 41(10-11):891-901. PubMed ID: 31998972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis.
    Hattori S; Tang C; Tanaka D; Yoon DH; Nozaki Y; Fujita H; Akitsu T; Sekiguchi T; Shoji S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated system for high-throughput generation and optimization of microdroplets.
    Wang Z; Samanipour R; Gamaleldin M; Sakthivel K; Kim K
    Biomicrofluidics; 2016 Sep; 10(5):054110. PubMed ID: 27733891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature.
    Liu N; Zhou G; Yang A; Yu X; Shi F; Sun J; Zhang J; Liu B; Wu CL; Tao X; Sun Y; Cui Y; Chu S
    Proc Natl Acad Sci U S A; 2019 Jan; 116(3):765-770. PubMed ID: 30602455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures.
    Debski PR; Sklodowska K; Michalski JA; Korczyk PM; Dolata M; Jakiela S
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary-based Centrifugal Microfluidic Device for Size-controllable Formation of Monodisperse Microdroplets.
    Morita M; Yamashita H; Hayakawa M; Onoe H; Takinoue M
    J Vis Exp; 2016 Feb; (108):53860. PubMed ID: 26967046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect.
    Shams Khorrami A; Rezai P
    Biomicrofluidics; 2018 May; 12(3):034113. PubMed ID: 29983838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active microdroplet merging by hydrodynamic flow control using a pneumatic actuator-assisted pillar structure.
    Yoon DH; Jamshaid A; Ito J; Nakahara A; Tanaka D; Akitsu T; Sekiguchi T; Shoji S
    Lab Chip; 2014 Aug; 14(16):3050-5. PubMed ID: 24961178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet microfluidic technology for single-cell high-throughput screening.
    Brouzes E; Medkova M; Savenelli N; Marran D; Twardowski M; Hutchison JB; Rothberg JM; Link DR; Perrimon N; Samuels ML
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14195-200. PubMed ID: 19617544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro magnetofluidics: droplet manipulation of double emulsions based on paramagnetic ionic liquids.
    Misuk V; Mai A; Giannopoulos K; Alobaid F; Epple B; Loewe H
    Lab Chip; 2013 Dec; 13(23):4542-8. PubMed ID: 24108233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput, Off-Chip Microdroplet Generator Enabled by a Spinning Conical Frustum.
    Tang SY; Wang K; Fan K; Feng Z; Zhang Y; Zhao Q; Yun G; Yuan D; Jiang L; Li M; Li W
    Anal Chem; 2019 Mar; 91(5):3725-3732. PubMed ID: 30747514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.
    Babahosseini H; Misteli T; DeVoe DL
    Lab Chip; 2019 Jan; 19(3):493-502. PubMed ID: 30623951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic generation of uniform water droplets using gas as the continuous phase.
    Jiang K; Lu AX; Dimitrakopoulos P; DeVoe DL; Raghavan SR
    J Colloid Interface Sci; 2015 Jun; 448():275-9. PubMed ID: 25744861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.