These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38258216)

  • 1. Research on an Online Monitoring Device for the Powder Laying Process of Laser Powder Bed Fusion.
    Wei B; Liu J; Li J; Zhao Z; Liu Y; Yang G; Liu L; Chang H
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images.
    Ansari MA; Crampton A; Parkinson S
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Powder-Spreading Process of Walnut Shell/Co-PES Biomass Composite Powder in Additive Manufacturing.
    Yu Y; Ma T; Wang S; Jiang M; Gao S; Guo Y; Jiang T; Doumbia BS; Yan B; Shen S
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online Monitoring Technology of Metal Powder Bed Fusion Processes: A Review.
    Hou ZJ; Wang Q; Zhao CG; Zheng J; Tian JM; Ge XH; Liu YG
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method.
    Habiba U; Hebert RJ
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing.
    Chen HY; Lin CC; Horng MH; Chang LK; Hsu JH; Chang TW; Hung JC; Lee RM; Tsai MC
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Laser Powder Bed Fusion Parameters for IN-738LC by Response Surface Method.
    Vilanova M; Escribano-GarcĂ­a R; Guraya T; San Sebastian M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-fusion for in-situ monitoring and molten state identification during LPBF of NiCoCr medium-entropy alloy.
    Li H; Yan S; Fu Y
    Sci Rep; 2024 Jun; 14(1):14697. PubMed ID: 38926441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Pore Detection and Morphological Features Extraction in Laser Powder Bed Fusion with Image Processing.
    Li J; Zhang X; Ma F; Wang S; Huang Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion.
    Shange M; Yadroitsava I; du Plessis A; Yadroitsev I
    3D Print Addit Manuf; 2022 Aug; 9(4):288-300. PubMed ID: 36660231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing.
    Nastac L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion.
    Mukherjee S; Benavidez E; Crumb M; Calta NP
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive manufacturing of Al
    Ur Rehman A; Ullah A; Liu T; Ur Rehman R; Salamci MU
    Front Chem; 2023; 11():1034473. PubMed ID: 36817171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.