BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38258237)

  • 1. A 3D-Printed Piezoelectric Microdevice for Human Energy Harvesting for Wearable Biosensors.
    Sobianin I; Psoma SD; Tourlidakis A
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated and measured piezoelectric energy harvesting of dynamic load in tires.
    Staaf H; Matsson S; Sepheri S; Köhler E; Daoud K; Ahrentorp F; Jonasson C; Folkow P; Ryynänen L; Penttila M; Rusu C
    Heliyon; 2024 Apr; 10(7):e29043. PubMed ID: 38601550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of piezoelectric nanogenerator in medicine: bio-experiment and theoretical exploration.
    Diao LW; Zheng J; Pan XD; Zhang W; Wang LF; Sun LZ
    J Thorac Dis; 2014 Sep; 6(9):1300-6. PubMed ID: 25276373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose Nanocrystal-Based All-3D-Printed Pyro-Piezoelectric Nanogenerator for Hybrid Energy Harvesting and Self-Powered Cardiorespiratory Monitoring toward the Human-Machine Interface.
    Maity K; Mondal A; Saha MC
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36896956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-in-One Piezo-Triboelectric Energy Harvester Module Based on Piezoceramic Nanofibers for Wearable Devices.
    Ji SH; Lee W; Yun JS
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18609-18616. PubMed ID: 32249574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane.
    Bairagi S; Ghosh S; Ali SW
    Sci Rep; 2020 Jul; 10(1):12121. PubMed ID: 32694668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Core-Shell Piezoelectric Nanofiber Yarns for Body Movement Energy Harvesting.
    Ji SH; Cho YS; Yun JS
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior piezoelectric performance of chemically synthesized transition metal dichalcogenide heterostructures for self-powered flexible piezoelectric nanogenerator.
    Bhattacharya D; Mukherjee S; Mitra RK; Ray SK
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37478833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications.
    Sun J; Guo H; Ribera J; Wu C; Tu K; Binelli M; Panzarasa G; Schwarze FWMR; Wang ZL; Burgert I
    ACS Nano; 2020 Nov; 14(11):14665-14674. PubMed ID: 32936611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printable Flexible Piezoelectric Composites with Energy Harvesting Features.
    Aradoaei M; Ciobanu RC; Schreiner C; Paulet M; Caramitu AR; Pintea J; Baibarac M
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers.
    Rahimzadeh M; Samadi H; Mohammadi NS
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization.
    Elnabawy E; Hassanain AH; Shehata N; Popelka A; Nair R; Yousef S; Kandas I
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31658601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester.
    Su WJ; Tseng CH
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating the Negative Piezoelectricity in Organic/Inorganic Hybrid Materials for High-performance Piezoelectric Nanogenerators.
    Guo H; Li L; Wang F; Kim SW; Sun H
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34733-34741. PubMed ID: 35867959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies.
    Mokhtari F; Shamshirsaz M; Latifi M; Foroughi J
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Piezoelectric Output Performance of the SnS
    Cao VA; Kim M; Hu W; Lee S; Youn S; Chang J; Chang HS; Nah J
    ACS Nano; 2021 Jun; 15(6):10428-10436. PubMed ID: 34014067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.