These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38258237)

  • 21. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a multi-direction piezoelectric and electromagnetic hybrid energy harvester used for ocean wave energy harvesting.
    Chen L; Li C; Fang J
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38088781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering.
    Haryńska A; Carayon I; Kosmela P; Brillowska-Dąbrowska A; Łapiński M; Kucińska-Lipka J; Janik H
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33050040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precipitation-Printed High-β Phase Poly(vinylidene fluoride) for Energy Harvesting.
    Tu R; Sprague E; Sodano HA
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58072-58081. PubMed ID: 33320534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of the Power Generation Performance of Impact Piezoelectric Energy Capture Devices.
    Tian X; Liu J; Hou J; Gai H; Yang J; Sun Z
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of an acoustic energy harvester consisting of electro-spun polyvinylidene difluoride nanofibers.
    Zhang R; Shao H; Lin T; Wang X
    J Acoust Soc Am; 2022 Jun; 151(6):3838. PubMed ID: 35778177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Test of a Spoke-like Piezoelectric Energy Harvester.
    Gao S; Cao Q; Zhou N; Ao H; Jiang H
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibration Energy Conversion Power Supply Based on the Piezoelectric Thin Film Planar Array.
    Wang B; Lan D; Zeng F; Li W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high performance lead-free flexible piezoelectric nanogenerator based on AlFeO
    Bhattacharyya D; Badhulika S
    Nanotechnology; 2023 Apr; 34(28):. PubMed ID: 37054702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-Cost Manufacturing of Monolithic Resonant Piezoelectric Devices for Energy Harvesting Using 3D Printing.
    Duque M; Murillo G
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic Energy Harvesting for Wearable Medical Sensors.
    Gljušćić P; Zelenika S; Blažević D; Kamenar E
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Investigation on Energy Harvesting Behavior of an Array Piezoelectric Coupled Disc Damper.
    Xie X; Huang X; Wang J; Wang Z; Zhou B; Zhang J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity.
    Shehata N; Nair R; Boualayan R; Kandas I; Masrani A; Elnabawy E; Omran N; Gamal M; Hassanin AH
    Sci Rep; 2022 May; 12(1):8335. PubMed ID: 35585095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of Non-Uniform Deformation on Piezoelectric Circular Diaphragm Energy Harvester with a Ring-Shaped Ceramic Disk.
    Xu C; Li Y; Yang T
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of Polypyrrole Electrode into Piezoelectric PVDF Energy Harvester with Improved Adhesion and Over-Oxidation Resistance.
    Baik K; Park S; Yun C; Park CH
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bidirectional Piezoelectric Energy Harvester.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31489888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A shoe-embedded piezoelectric energy harvester for wearable sensors.
    Zhao J; You Z
    Sensors (Basel); 2014 Jul; 14(7):12497-510. PubMed ID: 25019634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.