These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38258237)

  • 41. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks.
    Gljušćić P; Zelenika S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stretchable piezoelectric nanocomposite generator.
    Park KI; Jeong CK; Kim NK; Lee KJ
    Nano Converg; 2016; 3(1):12. PubMed ID: 28191422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved performance of stretchable piezoelectric energy harvester based on stress rearrangement.
    Kim YG; Hong S; Hwang B; Ahn SH; Song JH
    Sci Rep; 2022 Nov; 12(1):19149. PubMed ID: 36352018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Non-Resonant Piezoelectric-Electromagnetic-Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions.
    Tang G; Wang Z; Hu X; Wu S; Xu B; Li Z; Yan X; Xu F; Yuan D; Li P; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407286
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fish-Wearable Piezoelectric Nanogenerator for Dual-Modal Energy Scavenging from Fish-Tailing.
    Sheng T; He Q; Cao Y; Dong Z; Gai Y; Zhang W; Zhang D; Chen H; Jiang Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39570-39577. PubMed ID: 37561408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants.
    Beker L; Benet A; Meybodi AT; Eovino B; Pisano AP; Lin L
    Biomed Microdevices; 2017 Jun; 19(2):32. PubMed ID: 28425028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion.
    Nastro A; Pienazza N; Baù M; Aceti P; Rouvala M; Ardito R; Ferrari M; Corigliano A; Ferrari V
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and Experimental Study of Shape Memory Alloy and Piezoelectric Composite Power Generation Device.
    Yang F; Shi Y; Liu J; Wang Z; Tian X
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of a Novel Ultra-Low-Frequency Rotational Energy Harvester Based on a Double-Frequency Up-Conversion Mechanism.
    Li N; Xia H; Yang C; Luo T; Qin L
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630182
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure Design and Characterization of 3D Printing System of Thermal Battery Electrode Ink Film.
    Liu F; Lu J; Hao Y; Chang Y; Yu K; Liu S; Chu Z
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thin Film Piezoelectric Nanogenerator Based on (100)-Oriented Nanocrystalline AlN Grown by Pulsed Laser Deposition at Room Temperature.
    Li W; Cao Y; Sepúlveda N
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting.
    Liu X; Shang Y; Zhang J; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radio-frequency energy harvesting for wearable sensors.
    Borges LM; Chávez-Santiago R; Barroca N; Velez FJ; Balasingham I
    Healthc Technol Lett; 2015 Feb; 2(1):22-7. PubMed ID: 26609400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved Energy Harvesting Ability of Single-Layer Binary Fiber Nanocomposite Membrane for Multifunctional Wearable Hybrid Piezoelectric and Triboelectric Nanogenerator and Self-Powered Sensors.
    Huang A; Zhu Y; Peng S; Tan B; Peng X
    ACS Nano; 2024 Jan; 18(1):691-702. PubMed ID: 38147828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The 3D Printing of Nanocomposites for Wearable Biosensors: Recent Advances, Challenges, and Prospects.
    Parupelli SK; Desai S
    Bioengineering (Basel); 2023 Dec; 11(1):. PubMed ID: 38247910
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Screen-Printed Piezoelectric Sensors on Tattoo Paper Combined with All-Printed High-Performance Organic Electrochemical Transistors for Electrophysiological Signal Monitoring.
    Makhinia A; Beni V; Andersson Ersman P
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38018124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.